Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0073
  • Wer: 0.1246
  • Cer: 0.0482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0068 0.9801 37 0.0068 0.1158 0.0383
0.0071 1.9801 74 0.0067 0.1171 0.0394
0.0076 2.9801 111 0.0067 0.1222 0.0430
0.0062 3.9801 148 0.0067 0.1258 0.0409
0.005 4.9801 185 0.0068 0.1254 0.0406
0.0042 5.9801 222 0.0068 0.1242 0.0417
0.0055 6.9801 259 0.0070 0.1258 0.0425
0.0049 7.9801 296 0.0071 0.1240 0.0394

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
180
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Baselhany/Whisper_tiny_tring_large_sample_with_early_stop2

Finetuned
(1343)
this model