Whisper tiny AR - BH
This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0073
- Wer: 0.1246
- Cer: 0.0482
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0068 | 0.9801 | 37 | 0.0068 | 0.1158 | 0.0383 |
0.0071 | 1.9801 | 74 | 0.0067 | 0.1171 | 0.0394 |
0.0076 | 2.9801 | 111 | 0.0067 | 0.1222 | 0.0430 |
0.0062 | 3.9801 | 148 | 0.0067 | 0.1258 | 0.0409 |
0.005 | 4.9801 | 185 | 0.0068 | 0.1254 | 0.0406 |
0.0042 | 5.9801 | 222 | 0.0068 | 0.1242 | 0.0417 |
0.0055 | 6.9801 | 259 | 0.0070 | 0.1258 | 0.0425 |
0.0049 | 7.9801 | 296 | 0.0071 | 0.1240 | 0.0394 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 180
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Baselhany/Whisper_tiny_tring_large_sample_with_early_stop2
Base model
openai/whisper-tiny