Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0027
  • Wer: 0.0379
  • Cer: 0.0158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0001 0.0863 250 0.0024 0.0366 0.0157
0.0 0.1726 500 0.0024 0.0423 0.0214
0.0 0.2589 750 0.0024 0.0357 0.0148
0.0 0.3452 1000 0.0024 0.0423 0.0194
0.0 0.4314 1250 0.0024 0.0638 0.0245
0.0 0.5177 1500 0.0024 0.0634 0.0243
0.0001 0.6040 1750 0.0024 0.0621 0.0236
0.0002 0.6903 2000 0.0024 0.0627 0.0240
0.0002 0.7766 2250 0.0024 0.0622 0.0235
0.0004 0.8629 2500 0.0024 0.0624 0.0237
0.0021 0.9492 2750 0.0024 0.0626 0.0241

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
128
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Baselhany/Whisper_tiny_with_all_sample_few_epochs

Finetuned
(1343)
this model