Whisper tiny AR - BH
This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0027
- Wer: 0.0379
- Cer: 0.0158
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0001 | 0.0863 | 250 | 0.0024 | 0.0366 | 0.0157 |
0.0 | 0.1726 | 500 | 0.0024 | 0.0423 | 0.0214 |
0.0 | 0.2589 | 750 | 0.0024 | 0.0357 | 0.0148 |
0.0 | 0.3452 | 1000 | 0.0024 | 0.0423 | 0.0194 |
0.0 | 0.4314 | 1250 | 0.0024 | 0.0638 | 0.0245 |
0.0 | 0.5177 | 1500 | 0.0024 | 0.0634 | 0.0243 |
0.0001 | 0.6040 | 1750 | 0.0024 | 0.0621 | 0.0236 |
0.0002 | 0.6903 | 2000 | 0.0024 | 0.0627 | 0.0240 |
0.0002 | 0.7766 | 2250 | 0.0024 | 0.0622 | 0.0235 |
0.0004 | 0.8629 | 2500 | 0.0024 | 0.0624 | 0.0237 |
0.0021 | 0.9492 | 2750 | 0.0024 | 0.0626 | 0.0241 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 128
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Baselhany/Whisper_tiny_with_all_sample_few_epochs
Base model
openai/whisper-tiny