Edit model card

RWKV-4 169M

Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing.

Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing.

Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing.

Model Description

RWKV-4 169M is a L12-D768 causal language model trained on the Pile. See https://github.com/BlinkDL/RWKV-LM for details.

Use https://github.com/BlinkDL/ChatRWKV to run it.

ctx_len = 1024 n_layer = 12 n_embd = 768

Final checkpoint: RWKV-4-Pile-169M-20220807-8023.pth : Trained on the Pile for 332B tokens.

  • Pile loss 2.5355
  • LAMBADA ppl 29.33, acc 32.99%
  • PIQA acc 65.07%
  • SC2016 acc 58.79%
  • Hellaswag acc_norm 32.26%

With tiny attention (--tiny_att_dim 256 --tiny_att_layer 9): RWKV-4a-Pile-170M-20221209-7955.pth

  • Pile loss 2.4702
  • LAMBADA ppl 21.42, acc 38.23%
  • PIQA acc 63.76%
  • SC2016 acc 59.06%
  • Hellaswag acc_norm 32.40%

RWKV-4b-Pile-171M-20230202-7922.pth (--my_testing 'a')

  • Pile loss 2.4222
  • LAMBADA ppl 22.02, acc 38.56%
  • PIQA acc 64.04%
  • SC2016 acc 59.91%
  • Hellaswag acc_norm 33.33%
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for BlinkDL/rwkv-4-pile-169m

Quantizations
1 model

Dataset used to train BlinkDL/rwkv-4-pile-169m

Spaces using BlinkDL/rwkv-4-pile-169m 2