ShinDJ's picture
Update README.md
19bac74 verified
|
raw
history blame
8.25 kB
metadata
library_name: transformers
tags: []
image

Update!

  • [2024.12.12] 추가설명: 저희는 KMMLU, KoBEST, LogicKor 등 벤치 관련 학습/테스트/유사 데이터를 전혀 사용하지 않았습니다. 저런거 증강해가 쓰까서 학습하면 SOTA 성능 근접하게 나옵니다 모델위에 해보세요!
  • [2024.12.06] Bllossom-5B 모델 최초 업데이트!

Bllossom Inference-Code-Link Tuning-Code-Link

저희 Bllossom 팀에서 llama3.2-3B 기반의 한국어-영어 언어모델 Bllossom-AICA-5B를 공개합니다.
이번 Bllossom-AICA는 다음과 같은 특징을 보입니다.
 - 일반 언어모델, 시각-언어모델 양방향으로 활용이 가능한 최초의 llama기반 3B확장 모델입니다. (코랩 무료 GPU에서 사용가능한 유일한 한국어)
 - 이미지를 넣으면 시각-언어모델, 넣지 않으면 언어모델로 작동하며 시각-언어, 그냥 언어모델 양방향모두 학습 및 추론이 가능합니다.
 - 시각 정보의 이해를 바탕으로 언어모델의 성능이 대폭 향상되었습니다. (정성평가 기준 Bllossom-3.2-3B모델 대비 15%이상)
 - 한국어 OCR, 표, 그래프 해석에 최적화 되어있습니다.
 - 외부지식에 대한 선택적 추론 기능이 학습되었습니다. RAG를 활용할 때 질문과 관련 없는 오류가 섞인 정보의 경우 모델 스스로 활용하지 않습니다.

해당 모델에 활용된 데이터는 다음과 같습니다.
 - Huggingface에 공개된 한국어 사전학습 데이터를 거의 모두 활용해 Full tuning 했습니다.
 - AI-Hub, KISTI AI데이터, Huggingface에 공개된 거의 모든 한국어 시각-언어 관련 학습데이터를 활용해 시각-언어모델 사전학습을 했습니다. (다 나열하기 너무 많아요...)
 - 저희 연구실에서 자체 제작한 한국어 Document 관련 시각-언어 Instruction Tuning데이터를 활용했습니다.

언제나 그랬듯 해당 모델은 상업적 이용이 가능합니다.

1. Bllossom-AICA의 외부지식 지식추론 기능은 COLING2025에 발표될 예정입니다.
2. 좋은 언어모델 계속 업데이트 하겠습니다!! 한국어 강화를위해 공동 연구하실분(특히논문) 언제든 환영합니다!! 
We, the Bllossom team, are pleased to announce the release of Bllossom-Vision, a Korean-English vision-language model based on llama3.2. This Bllossom-Vision is a preview version and features the following:
 - It can be utilized both as a general language model and as a vision-language model.
 - It operates as a vision-language model when an image is provided, and as a language model when no image is provided. It is capable of both training and inference in both directions, whether as a vision-language or just a language model.
 - We have put significant effort into ensuring it remains faithful to the role of a vision-language model while maintaining the performance of a traditional language model as much as possible.
 - It is a fully bilingual model that does not compromise English performance at all.

Bllossom is developed by MLPLab at Seoultech, Teddysum and Yonsei Univ

Demo Video

Bllossom-V Demo

YouTube Tutorial

Example code

Python code (Use Vision-language Model)

from transformers import MllamaForConditionalGeneration,MllamaProcessor
import torch
from PIL import Image
import requests

model = MllamaForConditionalGeneration.from_pretrained(
  'Bllossom/llama-3.2-Korean-Bllossom-AICA-5B',
  torch_dtype=torch.bfloat16,
  device_map='auto'
)
processor = MllamaProcessor.from_pretrained('Bllossom/llama-3.2-Korean-Bllossom-AICA-5B')

url = "https://t1.daumcdn.net/cfile/tistory/21527E4A543DCABE1D"
image = Image.open(requests.get(url, stream=True).raw)

messages = [
  {'role': 'user','content': [
    {'type':'image'}
    {'type': 'text','text': '이 문서를 마크다운으로 바꿔줘'}
    ]},
  ]

input_text = processor.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)

inputs = processor(
    image,
    input_text,
    add_special_tokens=False,
    return_tensors="pt",
).to(model.device)

output = model.generate(**inputs, max_new_tokens=256,temperature=0.1,eos_token_id=processor.tokenizer.convert_tokens_to_ids('<|eot_id|>'),use_cache=False)
print(processor.decode(output[0]))

Python code (Use Language Model)

from transformers import MllamaForConditionalGeneration,MllamaProcessor
import torch
from PIL import Image
import requests

model = MllamaForConditionalGeneration.from_pretrained(
  'Bllossom/llama-3.2-Korean-Bllossom-AICA-5B',
  torch_dtype=torch.bfloat16,
  device_map='auto'
)
processor = MllamaProcessor.from_pretrained('Bllossom/llama-3.2-Korean-Bllossom-AICA-5B')

url = "https://cdn.discordapp.com/attachments/1156141391798345742/1313407928287494164/E18489E185B3E1848FE185B3E18485E185B5E186ABE18489E185A3E186BA202021-11-1620E1848BE185A9E18492E185AE2011.png?ex=675005f4&is=674eb474&hm=fc9c4231203f53c27f6edd2420961c182dd4a1ed14d4b73e04127f11393729af&"
image = Image.open(requests.get(url, stream=True).raw)

messages = [
  {'role': 'user','content': [
    {'type': 'text','text': '자연어처리 15주치 커리큘럼을 짜줘'}
    ]},
  ]

input_text = processor.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)

inputs = processor(
    images=None,
    text=input_text,
    add_special_tokens=False,
    return_tensors="pt",
).to(model.device)

output = model.generate(**inputs,max_new_tokens=256,temperature=0.1,eos_token_id=processor.tokenizer.convert_tokens_to_ids('<|eot_id|>'),use_cache=False)
print(processor.decode(output[0]))

Supported by

  • AICA

Citation

Vision-Language Model

@misc{VLR-Bench,
  author = {Hyeonseok Lim, Dongjae Shin, Seohyun Song, Inho Won, Minjun Kim, Junghun Yuk, Hangyeol Yoo, Haneol Jang, Kyungtae Lim},
  title = {VLR-Bench: Multilingual Benchmark Dataset for Vision-Language Retrieval Augmented Generation},
  year = {2025},
  publisher = {GitHub},
  journal = {COLING 2025},
 },
}
@misc{bllossom-V,
  author = {Dongjae Shin, Hyeonseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
  title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
  year = {2024},
  publisher = {GitHub},
  journal = {NAACL 2024 findings},
  paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
 },
}

Language Model

@misc{bllossom,
  author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
  title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
  year = {2024},
  journal = {LREC-COLING 2024},
  paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
 },
}

Contact

Contributor