|
# Llama-3.2-3B-Instruct-function-calling-gorilla-style-5epochs |
|
|
|
## Model Description |
|
This is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct for function calling capabilities, trained in a Gorilla-style format on a custom dataset. The model is trained to understand function calling instructions and generate appropriate responses. |
|
|
|
## Training Parameters |
|
- Base Model: unsloth/Llama-3.2-3B-Instruct |
|
- Dataset: Custom Function Calling Dataset (Gorilla-style format) |
|
- Training Type: Supervised Fine-tuning with LoRA |
|
- Epochs: 5 |
|
|
|
## Dataset Format |
|
The model was trained on a custom dataset with the following structure: |
|
```json |
|
{ |
|
"Instruction": "User instruction/query", |
|
"Functions": ["Available function definitions"], |
|
"Output": ["Model's response with function calls"] |
|
} |
|
``` |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("BluebrainAI/Llama-3.2-3B-Instruct-function-calling-gorilla-style-5epochs") |
|
tokenizer = AutoTokenizer.from_pretrained("BluebrainAI/Llama-3.2-3B-Instruct-function-calling-gorilla-style-5epochs") |
|
|
|
# Example usage |
|
instruction = "Your instruction here" |
|
chat = [ |
|
{"role": "user", "content": instruction} |
|
] |
|
input_text = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False) |
|
inputs = tokenizer(input_text, return_tensors="pt", truncation=True) |
|
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
``` |
|
|
|
## License |
|
This model inherits the license of the base model unsloth/Llama-3.2-3B-Instruct. |
|
|