How to use:

from transformers import AutoTokenizer, AutoModelForCausalLM import torch

model_id = "BoyangZ/Llama3-chinese_chat_ft"

tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", )

messages = [ {"role": "system", "content": "You are a LLM assistant. Users will ask you questions in Chinese, You will answer questions in Chinese"}, {"role": "user", "content": "李白是哪个朝代的人?"}, ]

input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device)

terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ]

outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True))

example1

image/png

example2

image/png

example3

image/png

Downloads last month
6
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.