ES and NL to AMR parsing

This model is a fine-tuned version of facebook/mbart-large-cc25 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6542
  • Smatch Precision: 73.41
  • Smatch Recall: 76.04
  • Smatch Fscore: 74.7
  • Smatch Unparsable: 0
  • Percent Not Recoverable: 0.2613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Smatch Precision Smatch Recall Smatch Fscore Smatch Unparsable Percent Not Recoverable
0.2675 1.0 6954 1.3790 23.26 65.74 34.36 0 0.0
0.1137 2.0 13908 1.0480 32.79 71.81 45.02 0 0.0
0.1606 3.0 20862 0.8573 38.99 72.53 50.72 0 0.0581
0.0923 4.0 27817 0.7614 40.4 75.22 52.56 0 0.0290
0.0292 5.0 34771 0.7935 46.44 75.63 57.54 0 0.0290
0.0106 6.0 41725 0.7326 49.54 75.8 59.92 0 0.0
0.0054 7.0 48679 0.6385 51.35 76.11 61.33 0 0.0290
0.048 8.0 55634 0.6489 53.03 76.79 62.74 0 0.0581
0.0334 9.0 62588 0.6128 59.05 77.3 66.95 0 0.0581
0.0393 10.0 69542 0.6242 57.91 77.02 66.11 0 0.0871
0.0251 11.0 76496 0.6417 58.46 77.31 66.58 0 0.1742
0.0035 12.0 83451 0.6271 62.28 76.99 68.86 0 0.0581
0.0228 13.0 90405 0.6685 62.47 76.97 68.97 0 0.1452
0.0119 14.0 97359 0.6414 63.12 77.23 69.47 0 0.1161
0.0066 15.0 104313 0.6515 65.63 77.02 70.87 0 0.0871
0.0025 16.0 111268 0.6467 67.05 77.35 71.83 0 0.0871
0.0024 17.0 118222 0.6657 65.47 77.13 70.82 0 0.0581
0.0223 18.0 125176 0.6754 67.56 77.21 72.06 0 0.1452
0.034 19.0 132130 0.6569 68.47 76.97 72.47 0 0.1161
0.007 20.0 139085 0.6734 69.86 77.17 73.34 0 0.2033
0.0224 21.0 146039 0.6544 70.95 76.72 73.72 0 0.1742
0.005 22.0 152993 0.6619 72.18 76.83 74.43 0 0.1742
0.0055 23.0 159947 0.6683 72.21 76.42 74.26 0 0.2323
0.0 24.0 166902 0.6585 72.8 76.3 74.51 0 0.2033
0.0693 25.0 173850 0.6542 73.41 76.04 74.7 0 0.2613

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.2
  • Tokenizers 0.13.3
Downloads last month
10
Safetensors
Model size
614M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BramVanroy/mbart-large-cc25-ft-amr30-es_nl

Finetuned
(23)
this model

Collection including BramVanroy/mbart-large-cc25-ft-amr30-es_nl