|
--- |
|
license: apache-2.0 |
|
base_model: google/muril-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: Muril-base-finetune-Telugu-qc |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Muril-base-finetune-Telugu-qc |
|
|
|
This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6250 |
|
- Precision: 0.7716 |
|
- Recall: 0.7647 |
|
- Accuracy: 0.7647 |
|
- F1-score: 0.7587 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1-score | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| |
|
| 1.7858 | 1.0 | 32 | 1.7821 | 0.0454 | 0.2130 | 0.2130 | 0.0748 | |
|
| 1.7526 | 2.0 | 64 | 1.7539 | 0.1754 | 0.2860 | 0.2860 | 0.1866 | |
|
| 1.7112 | 3.0 | 96 | 1.7232 | 0.3352 | 0.3043 | 0.3043 | 0.2168 | |
|
| 1.6655 | 4.0 | 128 | 1.6832 | 0.7122 | 0.6166 | 0.6166 | 0.6194 | |
|
| 1.6217 | 5.0 | 160 | 1.6496 | 0.7708 | 0.7688 | 0.7688 | 0.7629 | |
|
| 1.5898 | 6.0 | 192 | 1.6431 | 0.7618 | 0.7424 | 0.7424 | 0.7379 | |
|
| 1.5678 | 7.0 | 224 | 1.6285 | 0.7697 | 0.7627 | 0.7627 | 0.7565 | |
|
| 1.5572 | 8.0 | 256 | 1.6250 | 0.7716 | 0.7647 | 0.7647 | 0.7587 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|