Edit model card

Tamil-BERT-finetune-Tamil-questions

This model is a fine-tuned version of l3cube-pune/tamil-bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3564
  • Precision: 0.9226
  • Recall: 0.9218
  • Accuracy: 0.9218
  • F1-score: 0.9220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1-score
1.534 1.0 305 1.2125 0.8686 0.8778 0.8778 0.8701
0.937 2.0 610 0.7374 0.8869 0.8958 0.8958 0.8899
0.5335 3.0 915 0.4742 0.8959 0.9078 0.9078 0.9007
0.3097 4.0 1220 0.3972 0.9004 0.9138 0.9138 0.9064
0.2083 5.0 1525 0.3869 0.9103 0.9058 0.9058 0.9018
0.1535 6.0 1830 0.4181 0.9115 0.9078 0.9078 0.9087
0.1222 7.0 2135 0.3576 0.9243 0.9238 0.9238 0.9240
0.1002 8.0 2440 0.3564 0.9226 0.9218 0.9218 0.9220

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
238M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CVR123/Tamil-BERT-finetune-Tamil-questions

Finetuned
(2)
this model