metadata
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: output
results: []
output
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7144
- Precision: 0.9059
- Recall: 0.9049
- Accuracy: 0.9049
- F1-score: 0.9053
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1-score |
---|---|---|---|---|---|---|---|
0.6607 | 1.0 | 309 | 0.3826 | 0.8915 | 0.8907 | 0.8907 | 0.8905 |
0.2673 | 2.0 | 618 | 0.4694 | 0.8886 | 0.8866 | 0.8866 | 0.8860 |
0.1819 | 3.0 | 927 | 0.4766 | 0.9001 | 0.8988 | 0.8988 | 0.8989 |
0.102 | 4.0 | 1236 | 0.6096 | 0.8945 | 0.8927 | 0.8927 | 0.8930 |
0.0607 | 5.0 | 1545 | 0.6537 | 0.8971 | 0.8947 | 0.8947 | 0.8955 |
0.0326 | 6.0 | 1854 | 0.6568 | 0.9127 | 0.9109 | 0.9109 | 0.9116 |
0.0221 | 7.0 | 2163 | 0.7081 | 0.9045 | 0.9028 | 0.9028 | 0.9035 |
0.0133 | 8.0 | 2472 | 0.7144 | 0.9059 | 0.9049 | 0.9049 | 0.9053 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2