metadata
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/the-stack-dedup
metrics:
- code_eval
library_name: transformers
tags:
- code
- llama-cpp
- gguf-my-repo
base_model: bigcode/tiny_starcoder_py
model-index:
- name: Tiny-StarCoder-Py
results:
- task:
type: text-generation
dataset:
name: HumanEval
type: openai_humaneval
metrics:
- type: pass@1
value: 7.84%
name: pass@1
verified: false
CaioXapelaum/tiny_starcoder_py-Q8_0-GGUF
This model was converted to GGUF format from bigcode/tiny_starcoder_py
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo CaioXapelaum/tiny_starcoder_py-Q8_0-GGUF --hf-file tiny_starcoder_py-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo CaioXapelaum/tiny_starcoder_py-Q8_0-GGUF --hf-file tiny_starcoder_py-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo CaioXapelaum/tiny_starcoder_py-Q8_0-GGUF --hf-file tiny_starcoder_py-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo CaioXapelaum/tiny_starcoder_py-Q8_0-GGUF --hf-file tiny_starcoder_py-q8_0.gguf -c 2048