lora-alebrijeros-style

This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-large.

The main validation prompt used during training was:

sweatshirt painted in the alebrijeros style

Validation settings

  • CFG: 5.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 512x512

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
sweatshirt painted in the alebrijeros style
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 4
  • Training steps: 2600
  • Learning rate: 5e-05
  • Max grad norm: 0.01
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

alebrijeros-style-dataset-512

  • Repeats: 5
  • Total number of images: 25
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

alebrijeros-style-dataset-1024

  • Repeats: 5
  • Total number of images: 25
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

alebrijeros-style-dataset-512-crop

  • Repeats: 5
  • Total number of images: 25
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

alebrijeros-style-dataset-1024-crop

  • Repeats: 5
  • Total number of images: 25
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_id = 'CarlosRiverMe/lora-alebrijeros-style'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "sweatshirt painted in the alebrijeros style"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=512,
    height=512,
    guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
6
Inference API
Examples

Model tree for CarlosRiverMe/lora-alebrijeros-style

Adapter
(186)
this model