|
--- |
|
language: |
|
- en |
|
license: other |
|
model-index: |
|
- name: Poppy_Porpoise-0.85-L3-8B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 63.4 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 82.89 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 68.04 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 54.12 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 77.9 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 69.07 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B |
|
name: Open LLM Leaderboard |
|
--- |
|
# "Poppy Porpoise" is a cutting-edge AI roleplay assistant based on the Llama 3 8B model, specializing in crafting unforgettable narrative experiences. With its advanced language capabilities, Poppy expertly immerses users in an interactive and engaging adventure, tailoring each adventure to their individual preferences. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/Boje781GkTdYgORTYGI6r.png) |
|
|
|
If you want to use vision functionality: |
|
|
|
* You must use the latest versions of [Koboldcpp](https://github.com/LostRuins/koboldcpp). |
|
|
|
# To use the multimodal capabilities of this model and use **vision** you need to load the specified **mmproj** file, this can be found inside this model repo. [Llava MMProj](https://huggingface.co/Nitral-AI/Llama-3-Update-2.0-mmproj-model-f16) |
|
|
|
* You can load the **mmproj** by using the corresponding section in the interface: |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/UX6Ubss2EPNAT3SKGMLe0.png) |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Nitral-AI__Poppy_Porpoise-0.85-L3-8B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |69.24| |
|
|AI2 Reasoning Challenge (25-Shot)|63.40| |
|
|HellaSwag (10-Shot) |82.89| |
|
|MMLU (5-Shot) |68.04| |
|
|TruthfulQA (0-shot) |54.12| |
|
|Winogrande (5-shot) |77.90| |
|
|GSM8k (5-shot) |69.07| |
|
|
|
|