Nitral-AI's picture
Update README.md
b1daca3 verified
|
raw
history blame
4.42 kB
metadata
language:
  - en
license: other
model-index:
  - name: Poppy_Porpoise-0.85-L3-8B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 63.4
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.89
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 54.12
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.9
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.07
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Nitral-AI/Poppy_Porpoise-0.85-L3-8B
          name: Open LLM Leaderboard

"Poppy Porpoise" is a cutting-edge AI roleplay assistant based on the Llama 3 8B model, specializing in crafting unforgettable narrative experiences. With its advanced language capabilities, Poppy expertly immerses users in an interactive and engaging adventure, tailoring each adventure to their individual preferences.

image/png

If you want to use vision functionality:

  • You must use the latest versions of Koboldcpp.

To use the multimodal capabilities of this model and use vision you need to load the specified mmproj file, this can be found inside this model repo. Llava MMProj

  • You can load the mmproj by using the corresponding section in the interface:

image/png

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.24
AI2 Reasoning Challenge (25-Shot) 63.40
HellaSwag (10-Shot) 82.89
MMLU (5-Shot) 68.04
TruthfulQA (0-shot) 54.12
Winogrande (5-shot) 77.90
GSM8k (5-shot) 69.07