metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner-football
results: []
bert-finetuned-ner-football
This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1445
- Precision: 0.8577
- Recall: 0.9018
- F1: 0.8792
- Accuracy: 0.9625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 199 | 0.2021 | 0.7253 | 0.8035 | 0.7624 | 0.9363 |
No log | 2.0 | 398 | 0.1521 | 0.8362 | 0.8944 | 0.8643 | 0.9589 |
0.2566 | 3.0 | 597 | 0.1445 | 0.8577 | 0.9018 | 0.8792 | 0.9625 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.2
- Datasets 2.19.1
- Tokenizers 0.19.1