winberta-base / README.md
ClayAtlas's picture
Update README.md
01ed9f1
metadata
tags:
  - mteb
model-index:
  - name: winberta
    results:
      - task:
          type: Clustering
        dataset:
          type: PL-MTEB/8tags-clustering
          name: MTEB 8TagsClustering
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 4.6762575299584555
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 39.92944665836267
          - type: cos_sim_spearman
            value: 44.25208147787637
          - type: euclidean_pearson
            value: 42.772842908404925
          - type: euclidean_spearman
            value: 44.25208147787637
          - type: manhattan_pearson
            value: 42.600565541302124
          - type: manhattan_spearman
            value: 44.10077657065955
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 40.99236789888241
          - type: cos_sim_spearman
            value: 48.23930486989189
          - type: euclidean_pearson
            value: 48.58722571676781
          - type: euclidean_spearman
            value: 48.23930486989189
          - type: manhattan_pearson
            value: 48.46099247089918
          - type: manhattan_spearman
            value: 48.146434253428446
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/allegro-reviews
          name: MTEB AllegroReviews
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 24.890656063618295
          - type: f1
            value: 22.302214664290936
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 69.91044776119402
          - type: ap
            value: 31.66723912472561
          - type: f1
            value: 63.421139457970746
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 54.111349036402565
          - type: ap
            value: 71.1991959997261
          - type: f1
            value: 51.56958434326653
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 70.38230884557721
          - type: ap
            value: 19.909214544678782
          - type: f1
            value: 57.875461279657294
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 53.9507494646681
          - type: ap
            value: 11.599932987437649
          - type: f1
            value: 43.985879202841346
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 72.94987499999999
          - type: ap
            value: 67.05052265683933
          - type: f1
            value: 72.74508057235695
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 39.681999999999995
          - type: f1
            value: 37.89870143785791
      - task:
          type: Classification
        dataset:
          type: DDSC/angry-tweets
          name: MTEB AngryTweetsClassification
          config: default
          split: test
          revision: 20b0e6081892e78179356fada741b7afa381443d
        metrics:
          - type: accuracy
            value: 46.170009551098374
          - type: f1
            value: 45.00796485732147
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 33.69909330263927
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 23.04252711340139
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 53.987091172373944
          - type: mrr
            value: 67.65840038693224
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 54.56093256747345
          - type: cos_sim_spearman
            value: 56.27367976851523
          - type: euclidean_pearson
            value: 55.38528627937832
          - type: euclidean_spearman
            value: 56.27367284031196
          - type: manhattan_pearson
            value: 55.30402898692059
          - type: manhattan_spearman
            value: 56.19811385550433
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (de-en)
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 9.384133611691023
          - type: f1
            value: 9.25678496868476
          - type: precision
            value: 9.204791728800078
          - type: recall
            value: 9.384133611691023
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (fr-en)
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 17.719568567026194
          - type: f1
            value: 17.413603345806735
          - type: precision
            value: 17.284183459067894
          - type: recall
            value: 17.719568567026194
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (ru-en)
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 52.70523034291652
          - type: f1
            value: 51.97355963514606
          - type: precision
            value: 51.642562994485395
          - type: recall
            value: 52.70523034291652
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 89.0995260663507
          - type: f1
            value: 88.70458135860979
          - type: precision
            value: 88.5202738283307
          - type: recall
            value: 89.0995260663507
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 64.12337662337661
          - type: f1
            value: 62.35908261257942
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 32.70437969303962
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 23.27850834359782
      - task:
          type: Clustering
        dataset:
          type: slvnwhrl/blurbs-clustering-p2p
          name: MTEB BlurbsClusteringP2P
          config: default
          split: test
          revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
        metrics:
          - type: v_measure
            value: 17.471535040494018
      - task:
          type: Clustering
        dataset:
          type: slvnwhrl/blurbs-clustering-s2s
          name: MTEB BlurbsClusteringS2S
          config: default
          split: test
          revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
        metrics:
          - type: v_measure
            value: 7.957798776861661
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/cbd
          name: MTEB CBD
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 53.78000000000001
          - type: ap
            value: 16.030265142358818
          - type: f1
            value: 46.39936854646567
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/cdsce-pairclassification
          name: MTEB CDSC-E
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 82.69999999999999
          - type: cos_sim_ap
            value: 43.50726455006939
          - type: cos_sim_f1
            value: 55.21472392638037
          - type: cos_sim_precision
            value: 45.1505016722408
          - type: cos_sim_recall
            value: 71.05263157894737
          - type: dot_accuracy
            value: 82.69999999999999
          - type: dot_ap
            value: 43.50726455006939
          - type: dot_f1
            value: 55.21472392638037
          - type: dot_precision
            value: 45.1505016722408
          - type: dot_recall
            value: 71.05263157894737
          - type: euclidean_accuracy
            value: 82.69999999999999
          - type: euclidean_ap
            value: 43.50726455006939
          - type: euclidean_f1
            value: 55.21472392638037
          - type: euclidean_precision
            value: 45.1505016722408
          - type: euclidean_recall
            value: 71.05263157894737
          - type: manhattan_accuracy
            value: 83.1
          - type: manhattan_ap
            value: 43.95534719205733
          - type: manhattan_f1
            value: 55.34351145038169
          - type: manhattan_precision
            value: 43.41317365269461
          - type: manhattan_recall
            value: 76.31578947368422
          - type: max_accuracy
            value: 83.1
          - type: max_ap
            value: 43.95534719205733
          - type: max_f1
            value: 55.34351145038169
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 42.20892953002924
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 40.33286164241634
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 76.47170720756812
          - type: mrr
            value: 79.89289682539682
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 77.43675520157939
          - type: mrr
            value: 81.11420634920636
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 17.308
          - type: map_at_10
            value: 26.144000000000002
          - type: map_at_100
            value: 27.864
          - type: map_at_1000
            value: 28.032
          - type: map_at_3
            value: 23.058999999999997
          - type: map_at_5
            value: 24.724
          - type: mrr_at_1
            value: 27.206999999999997
          - type: mrr_at_10
            value: 34.287
          - type: mrr_at_100
            value: 35.375
          - type: mrr_at_1000
            value: 35.449999999999996
          - type: mrr_at_3
            value: 31.912000000000003
          - type: mrr_at_5
            value: 33.222
          - type: ndcg_at_1
            value: 27.206999999999997
          - type: ndcg_at_10
            value: 31.789
          - type: ndcg_at_100
            value: 39.251000000000005
          - type: ndcg_at_1000
            value: 42.536
          - type: ndcg_at_3
            value: 27.503
          - type: ndcg_at_5
            value: 29.226999999999997
          - type: precision_at_1
            value: 27.206999999999997
          - type: precision_at_10
            value: 7.3069999999999995
          - type: precision_at_100
            value: 1.345
          - type: precision_at_1000
            value: 0.17700000000000002
          - type: precision_at_3
            value: 15.854
          - type: precision_at_5
            value: 11.593
          - type: recall_at_1
            value: 17.308
          - type: recall_at_10
            value: 40.474
          - type: recall_at_100
            value: 71.897
          - type: recall_at_1000
            value: 94.375
          - type: recall_at_3
            value: 27.563
          - type: recall_at_5
            value: 32.944
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 76.11545399879735
          - type: cos_sim_ap
            value: 84.09842598179311
          - type: cos_sim_f1
            value: 77.66760077602932
          - type: cos_sim_precision
            value: 72.04559088182364
          - type: cos_sim_recall
            value: 84.24129062426935
          - type: dot_accuracy
            value: 76.11545399879735
          - type: dot_ap
            value: 84.11185112340806
          - type: dot_f1
            value: 77.66760077602932
          - type: dot_precision
            value: 72.04559088182364
          - type: dot_recall
            value: 84.24129062426935
          - type: euclidean_accuracy
            value: 76.11545399879735
          - type: euclidean_ap
            value: 84.09842259671359
          - type: euclidean_f1
            value: 77.66760077602932
          - type: euclidean_precision
            value: 72.04559088182364
          - type: euclidean_recall
            value: 84.24129062426935
          - type: manhattan_accuracy
            value: 76.12748045700542
          - type: manhattan_ap
            value: 84.07246090513767
          - type: manhattan_f1
            value: 77.41864555848726
          - type: manhattan_precision
            value: 73.064951234696
          - type: manhattan_recall
            value: 82.3240589198036
          - type: max_accuracy
            value: 76.12748045700542
          - type: max_ap
            value: 84.11185112340806
          - type: max_f1
            value: 77.66760077602932
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 53.266999999999996
          - type: map_at_10
            value: 61.807
          - type: map_at_100
            value: 62.342
          - type: map_at_1000
            value: 62.36000000000001
          - type: map_at_3
            value: 59.255
          - type: map_at_5
            value: 60.757000000000005
          - type: mrr_at_1
            value: 53.21399999999999
          - type: mrr_at_10
            value: 61.760999999999996
          - type: mrr_at_100
            value: 62.283
          - type: mrr_at_1000
            value: 62.300999999999995
          - type: mrr_at_3
            value: 59.272999999999996
          - type: mrr_at_5
            value: 60.727
          - type: ndcg_at_1
            value: 53.319
          - type: ndcg_at_10
            value: 66.334
          - type: ndcg_at_100
            value: 69.128
          - type: ndcg_at_1000
            value: 69.651
          - type: ndcg_at_3
            value: 61.105
          - type: ndcg_at_5
            value: 63.806
          - type: precision_at_1
            value: 53.319
          - type: precision_at_10
            value: 8.145
          - type: precision_at_100
            value: 0.9530000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 22.234
          - type: precision_at_5
            value: 14.668000000000001
          - type: recall_at_1
            value: 53.266999999999996
          - type: recall_at_10
            value: 80.717
          - type: recall_at_100
            value: 94.204
          - type: recall_at_1000
            value: 98.419
          - type: recall_at_3
            value: 66.359
          - type: recall_at_5
            value: 72.94500000000001
      - task:
          type: Classification
        dataset:
          type: DDSC/dkhate
          name: MTEB DKHateClassification
          config: default
          split: test
          revision: 59d12749a3c91a186063c7d729ec392fda94681c
        metrics:
          - type: accuracy
            value: 55.89665653495442
          - type: ap
            value: 13.442306681200666
          - type: f1
            value: 45.52792790494033
      - task:
          type: Classification
        dataset:
          type: AI-Sweden/SuperLim
          name: MTEB DalajClassification
          config: default
          split: test
          revision: 7ebf0b4caa7b2ae39698a889de782c09e6f5ee56
        metrics:
          - type: accuracy
            value: 49.77477477477478
          - type: ap
            value: 49.891019810950006
          - type: f1
            value: 49.271004191082156
      - task:
          type: Classification
        dataset:
          type: danish_political_comments
          name: MTEB DanishPoliticalCommentsClassification
          config: default
          split: train
          revision: edbb03726c04a0efab14fc8c3b8b79e4d420e5a1
        metrics:
          - type: accuracy
            value: 28.334721065778517
          - type: f1
            value: 25.604541019064698
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.575
          - type: map_at_10
            value: 65.302
          - type: map_at_100
            value: 68.85
          - type: map_at_1000
            value: 68.94200000000001
          - type: map_at_3
            value: 44.824000000000005
          - type: map_at_5
            value: 56.303000000000004
          - type: mrr_at_1
            value: 77.9
          - type: mrr_at_10
            value: 84.612
          - type: mrr_at_100
            value: 84.774
          - type: mrr_at_1000
            value: 84.78099999999999
          - type: mrr_at_3
            value: 84.05
          - type: mrr_at_5
            value: 84.42699999999999
          - type: ndcg_at_1
            value: 77.9
          - type: ndcg_at_10
            value: 75.247
          - type: ndcg_at_100
            value: 80.252
          - type: ndcg_at_1000
            value: 81.21000000000001
          - type: ndcg_at_3
            value: 73.664
          - type: ndcg_at_5
            value: 72.36200000000001
          - type: precision_at_1
            value: 77.9
          - type: precision_at_10
            value: 36.875
          - type: precision_at_100
            value: 4.607
          - type: precision_at_1000
            value: 0.483
          - type: precision_at_3
            value: 66.567
          - type: precision_at_5
            value: 55.97
          - type: recall_at_1
            value: 21.575
          - type: recall_at_10
            value: 77.268
          - type: recall_at_100
            value: 92.706
          - type: recall_at_1000
            value: 97.721
          - type: recall_at_3
            value: 48.42
          - type: recall_at_5
            value: 62.92
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 41.199999999999996
          - type: map_at_10
            value: 52.12
          - type: map_at_100
            value: 52.878
          - type: map_at_1000
            value: 52.898
          - type: map_at_3
            value: 49.6
          - type: map_at_5
            value: 51.23
          - type: mrr_at_1
            value: 41.199999999999996
          - type: mrr_at_10
            value: 52.12
          - type: mrr_at_100
            value: 52.878
          - type: mrr_at_1000
            value: 52.898
          - type: mrr_at_3
            value: 49.6
          - type: mrr_at_5
            value: 51.23
          - type: ndcg_at_1
            value: 41.199999999999996
          - type: ndcg_at_10
            value: 57.321
          - type: ndcg_at_100
            value: 61.019
          - type: ndcg_at_1000
            value: 61.638000000000005
          - type: ndcg_at_3
            value: 52.20399999999999
          - type: ndcg_at_5
            value: 55.177
          - type: precision_at_1
            value: 41.199999999999996
          - type: precision_at_10
            value: 7.359999999999999
          - type: precision_at_100
            value: 0.909
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 19.900000000000002
          - type: precision_at_5
            value: 13.4
          - type: recall_at_1
            value: 41.199999999999996
          - type: recall_at_10
            value: 73.6
          - type: recall_at_100
            value: 90.9
          - type: recall_at_1000
            value: 95.89999999999999
          - type: recall_at_3
            value: 59.699999999999996
          - type: recall_at_5
            value: 67
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 31.514999999999997
          - type: f1
            value: 26.58222460337632
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 47.00269334359369
          - type: f1
            value: 35.35096851514498
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 65.1704
          - type: ap
            value: 59.97217670850408
          - type: f1
            value: 64.92509757731281
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 77.33583489681051
          - type: ap
            value: 39.86267586660359
          - type: f1
            value: 71.07975139386433
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 68.22943962011342
          - type: cos_sim_spearman
            value: 74.09285052519111
          - type: euclidean_pearson
            value: 72.99465307442854
          - type: euclidean_spearman
            value: 74.09285052519111
          - type: manhattan_pearson
            value: 73.00139084439715
          - type: manhattan_spearman
            value: 74.07472412844967
      - task:
          type: Classification
        dataset:
          type: DDSC/lcc
          name: MTEB LccSentimentClassification
          config: default
          split: test
          revision: de7ba3406ee55ea2cc52a0a41408fa6aede6d3c6
        metrics:
          - type: accuracy
            value: 42.266666666666666
          - type: f1
            value: 40.963628523464294
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 24.311577701296468
          - type: mrr
            value: 23.545238095238094
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 55.757
          - type: map_at_10
            value: 64.866
          - type: map_at_100
            value: 65.398
          - type: map_at_1000
            value: 65.41900000000001
          - type: map_at_3
            value: 62.634
          - type: map_at_5
            value: 63.993
          - type: mrr_at_1
            value: 57.794000000000004
          - type: mrr_at_10
            value: 65.661
          - type: mrr_at_100
            value: 66.137
          - type: mrr_at_1000
            value: 66.156
          - type: mrr_at_3
            value: 63.625
          - type: mrr_at_5
            value: 64.863
          - type: ndcg_at_1
            value: 57.794000000000004
          - type: ndcg_at_10
            value: 69.107
          - type: ndcg_at_100
            value: 71.56700000000001
          - type: ndcg_at_1000
            value: 72.146
          - type: ndcg_at_3
            value: 64.756
          - type: ndcg_at_5
            value: 67.094
          - type: precision_at_1
            value: 57.794000000000004
          - type: precision_at_10
            value: 8.656
          - type: precision_at_100
            value: 0.989
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 24.623
          - type: precision_at_5
            value: 15.991
          - type: recall_at_1
            value: 55.757
          - type: recall_at_10
            value: 81.55799999999999
          - type: recall_at_100
            value: 92.826
          - type: recall_at_1000
            value: 97.38900000000001
          - type: recall_at_3
            value: 69.903
          - type: recall_at_5
            value: 75.497
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 81.20611035111718
          - type: f1
            value: 80.7763576575655
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 57.22175260636799
          - type: f1
            value: 53.81709852420842
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 58.40226817878585
          - type: f1
            value: 57.10362737664957
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 54.97337926714688
          - type: f1
            value: 54.14308620410437
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 64.16636787378988
          - type: f1
            value: 61.67057141912039
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 70.47377938517178
          - type: f1
            value: 70.31854571152071
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 51.56406748746011
          - type: f1
            value: 35.39870036930897
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 32.17807833192449
          - type: f1
            value: 19.018762850873046
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 33.89593062041361
          - type: f1
            value: 20.385240649662023
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 26.689633573441906
          - type: f1
            value: 19.339198990825825
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 38.2717820007171
          - type: f1
            value: 20.92023255890095
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 42.72694394213382
          - type: f1
            value: 30.207341681902918
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 33.496973772696705
          - type: f1
            value: 30.700367642324967
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 19.559515803631474
          - type: f1
            value: 16.655700010020094
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 26.46267652992602
          - type: f1
            value: 23.470618969045958
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 31.577000672494947
          - type: f1
            value: 29.663054588730454
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 27.985877605917953
          - type: f1
            value: 25.140738617026408
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 28.261600537995967
          - type: f1
            value: 25.406976600356344
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.373234700739744
          - type: f1
            value: 36.84775969220266
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 34.20309347679893
          - type: f1
            value: 29.937516367091355
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 26.01546738399462
          - type: f1
            value: 23.974936009024375
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.48419636852724
          - type: f1
            value: 57.07615823930852
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.368527236045736
          - type: f1
            value: 35.28610128351216
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 48.913920645595155
          - type: f1
            value: 45.10811063972933
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 30.114324142568925
          - type: f1
            value: 27.789916812631493
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.53194351042367
          - type: f1
            value: 35.77870968876826
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 24.858776059179558
          - type: f1
            value: 24.016121696621195
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.14256893073302
          - type: f1
            value: 35.82510556127162
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 31.97041022192334
          - type: f1
            value: 29.964722488737355
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 31.355077336919972
          - type: f1
            value: 27.175518791441
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.03765971755212
          - type: f1
            value: 35.94269966729341
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 28.6079354404842
          - type: f1
            value: 25.780613738124625
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.85810356422326
          - type: f1
            value: 35.910057289042975
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 47.901815736381984
          - type: f1
            value: 44.49582926460981
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 29.078681909885677
          - type: f1
            value: 27.191374864489585
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 25.770006724949564
          - type: f1
            value: 23.628483056948564
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 23.661735036987224
          - type: f1
            value: 20.66379761523298
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 21.267652992602553
          - type: f1
            value: 18.69704378377225
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.42367182246133
          - type: f1
            value: 37.08072704015134
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 30.12777404169469
          - type: f1
            value: 28.12098399487521
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 25.89105581708137
          - type: f1
            value: 23.62828321219826
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 27.713517148621385
          - type: f1
            value: 26.39822334010705
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 33.03631472763954
          - type: f1
            value: 32.08618313202589
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 24.193006052454603
          - type: f1
            value: 20.242784930454743
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.8897108271688
          - type: f1
            value: 33.78550922159666
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.30733019502354
          - type: f1
            value: 35.59178275630713
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 31.77202420981843
          - type: f1
            value: 29.418705805909163
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.26227303295226
          - type: f1
            value: 37.674278643695246
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 35.41694687289845
          - type: f1
            value: 34.01022965761375
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.6906523201076
          - type: f1
            value: 35.673039100995155
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 31.086079354404845
          - type: f1
            value: 27.947413132212034
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 35.14794889038332
          - type: f1
            value: 31.760327782227098
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.46267652992602
          - type: f1
            value: 33.80105597671451
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 27.911903160726297
          - type: f1
            value: 25.1703952528504
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 28.12037659717552
          - type: f1
            value: 25.154084848123414
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 26.338264963012776
          - type: f1
            value: 22.94258645498349
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 48.24142568930733
          - type: f1
            value: 46.29654473616155
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 32.73369199731002
          - type: f1
            value: 30.034009399741002
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 30.20847343644923
          - type: f1
            value: 29.3130936195692
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 30.27908540685945
          - type: f1
            value: 27.75970336235819
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.45393409549429
          - type: f1
            value: 38.469540400962856
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.98184263618023
          - type: f1
            value: 68.52330903084527
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.03160726294551
          - type: f1
            value: 62.85170205887711
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.53396099529253
          - type: f1
            value: 39.33203088232628
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 25.29589778076664
          - type: f1
            value: 24.054560287043003
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.91257565568257
          - type: f1
            value: 33.88220776733138
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.36516476126429
          - type: f1
            value: 33.95559644526807
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.19636852723605
          - type: f1
            value: 37.77671141233066
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.182246133154
          - type: f1
            value: 28.693154368869898
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.35440484196369
          - type: f1
            value: 45.204759870360334
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.920645595158035
          - type: f1
            value: 39.388774471125245
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 35.03026227303295
          - type: f1
            value: 32.35267560184562
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.7626092804304
          - type: f1
            value: 66.20295429511027
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.96368527236046
          - type: f1
            value: 39.718885309990604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 58.36247478143915
          - type: f1
            value: 54.900253259252096
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 33.95090786819099
          - type: f1
            value: 31.410449154365406
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.31607262945528
          - type: f1
            value: 43.329365161564105
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.0551445864156
          - type: f1
            value: 32.260804930594176
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.769334229993284
          - type: f1
            value: 46.20091498834857
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.91930060524545
          - type: f1
            value: 37.17661362631962
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 38.093476798924016
          - type: f1
            value: 35.716750028717996
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.08069939475453
          - type: f1
            value: 43.05376897299742
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.546738399462
          - type: f1
            value: 32.74492737651172
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.37794216543375
          - type: f1
            value: 40.30481782288051
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 57.02084734364493
          - type: f1
            value: 54.95498064363304
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 35.51109616677875
          - type: f1
            value: 33.03189592048449
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 33.412911903160726
          - type: f1
            value: 31.1209080205926
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 30.90114324142569
          - type: f1
            value: 28.036674925420314
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 26.829186281102892
          - type: f1
            value: 26.43660747971936
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.522528581035644
          - type: f1
            value: 48.03644348186012
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.02488231338265
          - type: f1
            value: 30.461290829668002
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.5527908540686
          - type: f1
            value: 33.49186265717059
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.14256893073303
          - type: f1
            value: 32.64829812492043
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.713517148621385
          - type: f1
            value: 39.983793912161794
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 30.998655010087422
          - type: f1
            value: 30.019431005783716
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.270342972427706
          - type: f1
            value: 40.782621083843196
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.43577673167451
          - type: f1
            value: 46.46967224972376
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 37.48823133826497
          - type: f1
            value: 35.56879569171134
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.904505716207126
          - type: f1
            value: 43.54065590744651
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.00672494956288
          - type: f1
            value: 40.68273214004436
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.655010087424344
          - type: f1
            value: 45.9866724558952
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 38.33557498318763
          - type: f1
            value: 34.87495617057008
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.781439139206455
          - type: f1
            value: 40.95774409811561
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.16139878950908
          - type: f1
            value: 40.874809080044805
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.0221923335575
          - type: f1
            value: 31.880593511438942
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 37.80766644250168
          - type: f1
            value: 35.80909783577956
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.5965030262273
          - type: f1
            value: 33.552796756090274
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 57.38399462004035
          - type: f1
            value: 53.92067950173084
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.36112979152656
          - type: f1
            value: 35.73348460761388
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.163416274377944
          - type: f1
            value: 35.36946437302125
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.425689307330195
          - type: f1
            value: 35.72323238273122
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 47.04438466711499
          - type: f1
            value: 46.775815838841666
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.69266980497646
          - type: f1
            value: 75.03810873420112
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.96032279757902
          - type: f1
            value: 71.05327209484685
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 41.3
          - type: map_at_10
            value: 46.753
          - type: map_at_100
            value: 47.344
          - type: map_at_1000
            value: 47.410000000000004
          - type: map_at_3
            value: 45.533
          - type: map_at_5
            value: 46.248
          - type: mrr_at_1
            value: 41.5
          - type: mrr_at_10
            value: 46.853
          - type: mrr_at_100
            value: 47.443999999999996
          - type: mrr_at_1000
            value: 47.510000000000005
          - type: mrr_at_3
            value: 45.633
          - type: mrr_at_5
            value: 46.348
          - type: ndcg_at_1
            value: 41.3
          - type: ndcg_at_10
            value: 49.283
          - type: ndcg_at_100
            value: 52.602000000000004
          - type: ndcg_at_1000
            value: 54.556000000000004
          - type: ndcg_at_3
            value: 46.793
          - type: ndcg_at_5
            value: 48.075
          - type: precision_at_1
            value: 41.3
          - type: precision_at_10
            value: 5.72
          - type: precision_at_100
            value: 0.738
          - type: precision_at_1000
            value: 0.09
          - type: precision_at_3
            value: 16.8
          - type: precision_at_5
            value: 10.7
          - type: recall_at_1
            value: 41.3
          - type: recall_at_10
            value: 57.199999999999996
          - type: recall_at_100
            value: 73.8
          - type: recall_at_1000
            value: 89.60000000000001
          - type: recall_at_3
            value: 50.4
          - type: recall_at_5
            value: 53.5
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.936450521634473
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.047583673034808
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 69.17
          - type: f1
            value: 68.72937085716812
      - task:
          type: Classification
        dataset:
          type: ScandEval/norec-mini
          name: MTEB NoRecClassification
          config: default
          split: test
          revision: 07b99ab3363c2e7f8f87015b01c21f4d9b917ce3
        metrics:
          - type: accuracy
            value: 43.5302734375
          - type: f1
            value: 40.85343331953274
      - task:
          type: Classification
        dataset:
          type: NbAiLab/norwegian_parliament
          name: MTEB NorwegianParliament
          config: default
          split: test
          revision: f7393532774c66312378d30b197610b43d751972
        metrics:
          - type: accuracy
            value: 54.900000000000006
          - type: ap
            value: 52.72583551130585
          - type: f1
            value: 54.72449827992906
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 70.27612344342177
          - type: cos_sim_ap
            value: 73.44116481862304
          - type: cos_sim_f1
            value: 72.28607918263091
          - type: cos_sim_precision
            value: 60.556348074179745
          - type: cos_sim_recall
            value: 89.65153115100317
          - type: dot_accuracy
            value: 70.27612344342177
          - type: dot_ap
            value: 73.44116481862304
          - type: dot_f1
            value: 72.28607918263091
          - type: dot_precision
            value: 60.556348074179745
          - type: dot_recall
            value: 89.65153115100317
          - type: euclidean_accuracy
            value: 70.27612344342177
          - type: euclidean_ap
            value: 73.44116481862304
          - type: euclidean_f1
            value: 72.28607918263091
          - type: euclidean_precision
            value: 60.556348074179745
          - type: euclidean_recall
            value: 89.65153115100317
          - type: manhattan_accuracy
            value: 70.38440714672441
          - type: manhattan_ap
            value: 73.46922542436253
          - type: manhattan_f1
            value: 72.38838318162117
          - type: manhattan_precision
            value: 61.39705882352941
          - type: manhattan_recall
            value: 88.17317845828934
          - type: max_accuracy
            value: 70.38440714672441
          - type: max_ap
            value: 73.46922542436253
          - type: max_f1
            value: 72.38838318162117
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.79000000000002
          - type: ap
            value: 87.04275277120101
          - type: f1
            value: 89.77446550482388
      - task:
          type: Classification
        dataset:
          type: laugustyniak/abusive-clauses-pl
          name: MTEB PAC
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 57.138719953663475
          - type: ap
            value: 72.7490265036156
          - type: f1
            value: 55.67596841902006
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 11.928849138540556
          - type: cos_sim_spearman
            value: 12.182908575820269
          - type: euclidean_pearson
            value: 14.455528347393356
          - type: euclidean_spearman
            value: 12.182908575820269
          - type: manhattan_pearson
            value: 14.506141564058982
          - type: manhattan_spearman
            value: 12.25397844569351
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/ppc-pairclassification
          name: MTEB PPC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 67
          - type: cos_sim_ap
            value: 70.19022218012687
          - type: cos_sim_f1
            value: 75.44529262086515
          - type: cos_sim_precision
            value: 61.2603305785124
          - type: cos_sim_recall
            value: 98.17880794701986
          - type: dot_accuracy
            value: 67
          - type: dot_ap
            value: 70.19022218012687
          - type: dot_f1
            value: 75.44529262086515
          - type: dot_precision
            value: 61.2603305785124
          - type: dot_recall
            value: 98.17880794701986
          - type: euclidean_accuracy
            value: 67
          - type: euclidean_ap
            value: 70.19022218012687
          - type: euclidean_f1
            value: 75.44529262086515
          - type: euclidean_precision
            value: 61.2603305785124
          - type: euclidean_recall
            value: 98.17880794701986
          - type: manhattan_accuracy
            value: 66.7
          - type: manhattan_ap
            value: 70.20851258919818
          - type: manhattan_f1
            value: 75.40574282147317
          - type: manhattan_precision
            value: 60.52104208416834
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 67
          - type: max_ap
            value: 70.20851258919818
          - type: max_f1
            value: 75.44529262086515
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/psc-pairclassification
          name: MTEB PSC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 83.20964749536178
          - type: cos_sim_ap
            value: 77.83239751517948
          - type: cos_sim_f1
            value: 70.17045454545455
          - type: cos_sim_precision
            value: 65.69148936170212
          - type: cos_sim_recall
            value: 75.3048780487805
          - type: dot_accuracy
            value: 83.20964749536178
          - type: dot_ap
            value: 77.83239751517948
          - type: dot_f1
            value: 70.17045454545455
          - type: dot_precision
            value: 65.69148936170212
          - type: dot_recall
            value: 75.3048780487805
          - type: euclidean_accuracy
            value: 83.20964749536178
          - type: euclidean_ap
            value: 77.83239751517948
          - type: euclidean_f1
            value: 70.17045454545455
          - type: euclidean_precision
            value: 65.69148936170212
          - type: euclidean_recall
            value: 75.3048780487805
          - type: manhattan_accuracy
            value: 82.74582560296847
          - type: manhattan_ap
            value: 77.71434418573791
          - type: manhattan_f1
            value: 69.89720998531571
          - type: manhattan_precision
            value: 67.42209631728045
          - type: manhattan_recall
            value: 72.5609756097561
          - type: max_accuracy
            value: 83.20964749536178
          - type: max_ap
            value: 77.83239751517948
          - type: max_f1
            value: 70.17045454545455
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/polemo2_in
          name: MTEB PolEmo2.0-IN
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 40.96952908587258
          - type: f1
            value: 40.34996985581621
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/polemo2_out
          name: MTEB PolEmo2.0-OUT
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 17.57085020242915
          - type: f1
            value: 13.699227854176883
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 28.3302552745107
          - type: cos_sim_spearman
            value: 29.935415470590353
          - type: euclidean_pearson
            value: 28.406125326818536
          - type: euclidean_spearman
            value: 29.935394196825893
          - type: manhattan_pearson
            value: 28.535226539445524
          - type: manhattan_spearman
            value: 30.110291572017182
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 30.831283224792134
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 46.29339268141013
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/sicke-pl-pairclassification
          name: MTEB SICK-E-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 73.11455360782715
          - type: cos_sim_ap
            value: 46.51191750197438
          - type: cos_sim_f1
            value: 53.48066298342542
          - type: cos_sim_precision
            value: 43.682310469314075
          - type: cos_sim_recall
            value: 68.94586894586895
          - type: dot_accuracy
            value: 73.11455360782715
          - type: dot_ap
            value: 46.511775041787075
          - type: dot_f1
            value: 53.48066298342542
          - type: dot_precision
            value: 43.682310469314075
          - type: dot_recall
            value: 68.94586894586895
          - type: euclidean_accuracy
            value: 73.11455360782715
          - type: euclidean_ap
            value: 46.51191750197438
          - type: euclidean_f1
            value: 53.48066298342542
          - type: euclidean_precision
            value: 43.682310469314075
          - type: euclidean_recall
            value: 68.94586894586895
          - type: manhattan_accuracy
            value: 73.11455360782715
          - type: manhattan_ap
            value: 46.514972647839905
          - type: manhattan_f1
            value: 53.430821147356575
          - type: manhattan_precision
            value: 44.1449814126394
          - type: manhattan_recall
            value: 67.66381766381767
          - type: max_accuracy
            value: 73.11455360782715
          - type: max_ap
            value: 46.514972647839905
          - type: max_f1
            value: 53.48066298342542
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 65.06521909332356
          - type: cos_sim_spearman
            value: 66.05535986394263
          - type: euclidean_pearson
            value: 65.77030042276493
          - type: euclidean_spearman
            value: 66.05535986394263
          - type: manhattan_pearson
            value: 65.91869122430603
          - type: manhattan_spearman
            value: 66.15477943325074
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 79.77776864632986
          - type: cos_sim_spearman
            value: 80.54295891407341
          - type: euclidean_pearson
            value: 80.15310049503712
          - type: euclidean_spearman
            value: 80.54295891407341
          - type: manhattan_pearson
            value: 80.16703044389185
          - type: manhattan_spearman
            value: 80.61034669195091
      - task:
          type: Classification
        dataset:
          type: ScandEval/scala-da
          name: MTEB ScalaDaClassification
          config: default
          split: test
          revision: 1de08520a7b361e92ffa2a2201ebd41942c54675
        metrics:
          - type: accuracy
            value: 50.1123046875
          - type: ap
            value: 50.05839950666221
          - type: f1
            value: 49.75320900875982
      - task:
          type: Classification
        dataset:
          type: ScandEval/scala-sv
          name: MTEB ScalaSvClassification
          config: default
          split: test
          revision: 1b48e3dcb02872335ff985ff938a054a4ed99008
        metrics:
          - type: accuracy
            value: 49.8193359375
          - type: ap
            value: 49.91266630748165
          - type: f1
            value: 49.56571584707715
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.71188118811881
          - type: cos_sim_ap
            value: 90.71339192859018
          - type: cos_sim_f1
            value: 85.26740665993945
          - type: cos_sim_precision
            value: 86.0488798370672
          - type: cos_sim_recall
            value: 84.5
          - type: dot_accuracy
            value: 99.71188118811881
          - type: dot_ap
            value: 90.71339192859018
          - type: dot_f1
            value: 85.26740665993945
          - type: dot_precision
            value: 86.0488798370672
          - type: dot_recall
            value: 84.5
          - type: euclidean_accuracy
            value: 99.71188118811881
          - type: euclidean_ap
            value: 90.71339192859018
          - type: euclidean_f1
            value: 85.26740665993945
          - type: euclidean_precision
            value: 86.0488798370672
          - type: euclidean_recall
            value: 84.5
          - type: manhattan_accuracy
            value: 99.71881188118812
          - type: manhattan_ap
            value: 91.25511397395691
          - type: manhattan_f1
            value: 85.48548548548548
          - type: manhattan_precision
            value: 85.57114228456913
          - type: manhattan_recall
            value: 85.39999999999999
          - type: max_accuracy
            value: 99.71881188118812
          - type: max_ap
            value: 91.25511397395691
          - type: max_f1
            value: 85.48548548548548
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 39.44467533846411
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.60878918655969
      - task:
          type: Classification
        dataset:
          type: ScandEval/swerec-mini
          name: MTEB SweRecClassification
          config: default
          split: test
          revision: 3c62f26bafdc4c4e1c16401ad4b32f0a94b46612
        metrics:
          - type: accuracy
            value: 62.9736328125
          - type: f1
            value: 55.59659753835253
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 67.18460327564007
          - type: mrr
            value: 77.58419442026417
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 24.196
          - type: map_at_10
            value: 66.633
          - type: map_at_100
            value: 70.417
          - type: map_at_1000
            value: 70.54
          - type: map_at_3
            value: 47.166999999999994
          - type: map_at_5
            value: 57.711
          - type: mrr_at_1
            value: 83.947
          - type: mrr_at_10
            value: 87.47500000000001
          - type: mrr_at_100
            value: 87.62100000000001
          - type: mrr_at_1000
            value: 87.628
          - type: mrr_at_3
            value: 86.813
          - type: mrr_at_5
            value: 87.202
          - type: ndcg_at_1
            value: 83.943
          - type: ndcg_at_10
            value: 75.936
          - type: ndcg_at_100
            value: 80.73700000000001
          - type: ndcg_at_1000
            value: 81.989
          - type: ndcg_at_3
            value: 78.417
          - type: ndcg_at_5
            value: 76.301
          - type: precision_at_1
            value: 83.943
          - type: precision_at_10
            value: 37.984
          - type: precision_at_100
            value: 4.772
          - type: precision_at_1000
            value: 0.507
          - type: precision_at_3
            value: 68.911
          - type: precision_at_5
            value: 57.267
          - type: recall_at_1
            value: 24.196
          - type: recall_at_10
            value: 74.67099999999999
          - type: recall_at_100
            value: 90.18599999999999
          - type: recall_at_1000
            value: 96.54700000000001
          - type: recall_at_3
            value: 49.217
          - type: recall_at_5
            value: 61.765
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 49.769
          - type: f1
            value: 48.06519294990893
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (sqi-eng)
          config: sqi-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.4
          - type: f1
            value: 15.828455908556528
          - type: precision
            value: 14.818339585714199
          - type: recall
            value: 20.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fry-eng)
          config: fry-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 26.589595375722542
          - type: f1
            value: 19.027433709514636
          - type: precision
            value: 17.053635189473336
          - type: recall
            value: 26.589595375722542
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kur-eng)
          config: kur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.780487804878048
          - type: f1
            value: 6.111094140071713
          - type: precision
            value: 5.623318968152088
          - type: recall
            value: 8.780487804878048
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tur-eng)
          config: tur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.4
          - type: f1
            value: 9.377654588051435
          - type: precision
            value: 8.787308104062777
          - type: recall
            value: 12.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (deu-eng)
          config: deu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23
          - type: f1
            value: 20.202147869674185
          - type: precision
            value: 19.391492475731603
          - type: recall
            value: 23
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nld-eng)
          config: nld-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 34.1
          - type: f1
            value: 29.410775916893563
          - type: precision
            value: 28.070429087454624
          - type: recall
            value: 34.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ron-eng)
          config: ron-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.599999999999998
          - type: f1
            value: 17.35632359863931
          - type: precision
            value: 16.518293570846236
          - type: recall
            value: 20.599999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ang-eng)
          config: ang-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.8955223880597
          - type: f1
            value: 13.264176317293085
          - type: precision
            value: 11.76782203505206
          - type: recall
            value: 20.8955223880597
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ido-eng)
          config: ido-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 15.6
          - type: f1
            value: 11.7763376390295
          - type: precision
            value: 10.914347870755636
          - type: recall
            value: 15.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jav-eng)
          config: jav-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.24390243902439
          - type: f1
            value: 6.743976890318354
          - type: precision
            value: 6.10895202358617
          - type: recall
            value: 10.24390243902439
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (isl-eng)
          config: isl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.700000000000001
          - type: f1
            value: 7.491822942738051
          - type: precision
            value: 7.074516864427855
          - type: recall
            value: 9.700000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slv-eng)
          config: slv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.094775212636696
          - type: f1
            value: 10.166440808088712
          - type: precision
            value: 9.417657228214015
          - type: recall
            value: 14.094775212636696
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cym-eng)
          config: cym-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.521739130434783
          - type: f1
            value: 5.637620426566197
          - type: precision
            value: 5.181579047619263
          - type: recall
            value: 8.521739130434783
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kaz-eng)
          config: kaz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.913043478260867
          - type: f1
            value: 16.97458403110577
          - type: precision
            value: 15.775659428291005
          - type: recall
            value: 21.913043478260867
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (est-eng)
          config: est-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.8
          - type: f1
            value: 5.450419697471649
          - type: precision
            value: 5.062362215300643
          - type: recall
            value: 7.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (heb-eng)
          config: heb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 34.4
          - type: f1
            value: 30.260987068487072
          - type: precision
            value: 28.893481007908996
          - type: recall
            value: 34.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gla-eng)
          config: gla-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.2219541616405305
          - type: f1
            value: 2.684516189451713
          - type: precision
            value: 2.463954323534627
          - type: recall
            value: 4.2219541616405305
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mar-eng)
          config: mar-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 33.300000000000004
          - type: f1
            value: 28.55938229523907
          - type: precision
            value: 27.10483987488783
          - type: recall
            value: 33.300000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lat-eng)
          config: lat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.200000000000001
          - type: f1
            value: 7.868244347487681
          - type: precision
            value: 7.121914265161029
          - type: recall
            value: 11.200000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bel-eng)
          config: bel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 29.799999999999997
          - type: f1
            value: 24.34143569640063
          - type: precision
            value: 22.947270794132873
          - type: recall
            value: 29.799999999999997
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pms-eng)
          config: pms-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.95238095238095
          - type: f1
            value: 9.269868736708247
          - type: precision
            value: 8.408018250035058
          - type: recall
            value: 12.95238095238095
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gle-eng)
          config: gle-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6
          - type: f1
            value: 3.647551182853867
          - type: precision
            value: 3.2680275654986537
          - type: recall
            value: 6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pes-eng)
          config: pes-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.099999999999994
          - type: f1
            value: 51.06459207459208
          - type: precision
            value: 48.901510822510815
          - type: recall
            value: 57.099999999999994
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nob-eng)
          config: nob-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 32.4
          - type: f1
            value: 27.89405452374492
          - type: precision
            value: 26.51932166043579
          - type: recall
            value: 32.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bul-eng)
          config: bul-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 47.4
          - type: f1
            value: 42.17928673178673
          - type: precision
            value: 40.436673759871375
          - type: recall
            value: 47.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cbk-eng)
          config: cbk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.000000000000002
          - type: f1
            value: 10.949295388694702
          - type: precision
            value: 10.259331172194964
          - type: recall
            value: 14.000000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hun-eng)
          config: hun-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 18.2
          - type: f1
            value: 14.773692094643707
          - type: precision
            value: 13.903416806571641
          - type: recall
            value: 18.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uig-eng)
          config: uig-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.5
          - type: f1
            value: 2.64568935010746
          - type: precision
            value: 2.4019067331153896
          - type: recall
            value: 4.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (rus-eng)
          config: rus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.8
          - type: f1
            value: 60.679131295533736
          - type: precision
            value: 58.812619047619044
          - type: recall
            value: 65.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (spa-eng)
          config: spa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 32.9
          - type: f1
            value: 28.186653736628603
          - type: precision
            value: 26.8010262685625
          - type: recall
            value: 32.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hye-eng)
          config: hye-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 25.60646900269542
          - type: f1
            value: 23.12611992122878
          - type: precision
            value: 22.426345061728544
          - type: recall
            value: 25.60646900269542
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tel-eng)
          config: tel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 29.48717948717949
          - type: f1
            value: 23.68695247318436
          - type: precision
            value: 22.09868834868835
          - type: recall
            value: 29.48717948717949
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (afr-eng)
          config: afr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.400000000000002
          - type: f1
            value: 13.221122174926522
          - type: precision
            value: 12.33469931277381
          - type: recall
            value: 16.400000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mon-eng)
          config: mon-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 29.772727272727273
          - type: f1
            value: 24.851015943121205
          - type: precision
            value: 23.526050931889745
          - type: recall
            value: 29.772727272727273
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arz-eng)
          config: arz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 13.626834381551362
          - type: f1
            value: 11.419087551163022
          - type: precision
            value: 10.700808625336927
          - type: recall
            value: 13.626834381551362
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hrv-eng)
          config: hrv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 13.4
          - type: f1
            value: 10.050831111434281
          - type: precision
            value: 9.371874912594967
          - type: recall
            value: 13.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nov-eng)
          config: nov-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 31.1284046692607
          - type: f1
            value: 25.220003329410517
          - type: precision
            value: 23.700114736106954
          - type: recall
            value: 31.1284046692607
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gsw-eng)
          config: gsw-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 17.94871794871795
          - type: f1
            value: 11.687818354485021
          - type: precision
            value: 10.603332951114169
          - type: recall
            value: 17.94871794871795
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nds-eng)
          config: nds-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 18.9
          - type: f1
            value: 14.988123337504142
          - type: precision
            value: 14.116226418627315
          - type: recall
            value: 18.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ukr-eng)
          config: ukr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 44.800000000000004
          - type: f1
            value: 39.7999924337166
          - type: precision
            value: 38.31692251705409
          - type: recall
            value: 44.800000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uzb-eng)
          config: uzb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.607476635514018
          - type: f1
            value: 3.5310597299663247
          - type: precision
            value: 3.2762993077737717
          - type: recall
            value: 5.607476635514018
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lit-eng)
          config: lit-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11
          - type: f1
            value: 8.130418841674222
          - type: precision
            value: 7.4862958556343395
          - type: recall
            value: 11
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ina-eng)
          config: ina-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 27.700000000000003
          - type: f1
            value: 23.21816159401837
          - type: precision
            value: 22.008571800809705
          - type: recall
            value: 27.700000000000003
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lfn-eng)
          config: lfn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.1
          - type: f1
            value: 8.762797265443172
          - type: precision
            value: 8.08486589350323
          - type: recall
            value: 12.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (zsm-eng)
          config: zsm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 35.099999999999994
          - type: f1
            value: 30.896978216485955
          - type: precision
            value: 29.761690118074224
          - type: recall
            value: 35.099999999999994
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ita-eng)
          config: ita-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.5
          - type: f1
            value: 15.977011148466255
          - type: precision
            value: 14.96707597911526
          - type: recall
            value: 20.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cmn-eng)
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.3
          - type: f1
            value: 86.26333333333335
          - type: precision
            value: 84.88666666666666
          - type: recall
            value: 89.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lvs-eng)
          config: lvs-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.299999999999999
          - type: f1
            value: 7.404212810418141
          - type: precision
            value: 6.846457701679114
          - type: recall
            value: 10.299999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (glg-eng)
          config: glg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.599999999999998
          - type: f1
            value: 19.32375026259617
          - type: precision
            value: 18.23710400667444
          - type: recall
            value: 23.599999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ceb-eng)
          config: ceb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.5
          - type: f1
            value: 4.796580557105162
          - type: precision
            value: 4.547019472479999
          - type: recall
            value: 6.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bre-eng)
          config: bre-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.5
          - type: f1
            value: 3.2163409836594195
          - type: precision
            value: 2.9845718982896057
          - type: recall
            value: 4.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ben-eng)
          config: ben-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 28.4
          - type: f1
            value: 23.44851541733121
          - type: precision
            value: 22.01784835391281
          - type: recall
            value: 28.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swg-eng)
          config: swg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.071428571428573
          - type: f1
            value: 10.953798185941043
          - type: precision
            value: 9.992677626606197
          - type: recall
            value: 16.071428571428573
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arq-eng)
          config: arq-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.26893523600439
          - type: f1
            value: 3.9908791491106923
          - type: precision
            value: 3.7779047220052937
          - type: recall
            value: 5.26893523600439
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kab-eng)
          config: kab-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.3
          - type: f1
            value: 0.603027485224566
          - type: precision
            value: 0.5195844597160387
          - type: recall
            value: 1.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fra-eng)
          config: fra-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 24
          - type: f1
            value: 19.96240217555452
          - type: precision
            value: 18.802741591297085
          - type: recall
            value: 24
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (por-eng)
          config: por-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 33.6
          - type: f1
            value: 28.597393691065413
          - type: precision
            value: 27.188430429408495
          - type: recall
            value: 33.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tat-eng)
          config: tat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.5
          - type: f1
            value: 2.5102180790224264
          - type: precision
            value: 2.236767959648205
          - type: recall
            value: 4.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (oci-eng)
          config: oci-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.7
          - type: f1
            value: 6.688281884758027
          - type: precision
            value: 6.198557972329553
          - type: recall
            value: 8.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pol-eng)
          config: pol-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 17.4
          - type: f1
            value: 14.513506869901672
          - type: precision
            value: 13.789660772909999
          - type: recall
            value: 17.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (war-eng)
          config: war-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.6000000000000005
          - type: f1
            value: 4.842727926144423
          - type: precision
            value: 4.54242126134823
          - type: recall
            value: 6.6000000000000005
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (aze-eng)
          config: aze-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.799999999999999
          - type: f1
            value: 8.548331316616201
          - type: precision
            value: 7.820128737629438
          - type: recall
            value: 11.799999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (vie-eng)
          config: vie-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 55.50000000000001
          - type: f1
            value: 49.56005716505717
          - type: precision
            value: 47.503501400560225
          - type: recall
            value: 55.50000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nno-eng)
          config: nno-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.900000000000002
          - type: f1
            value: 13.80254156510093
          - type: precision
            value: 13.026236549222661
          - type: recall
            value: 16.900000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cha-eng)
          config: cha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.5985401459854
          - type: f1
            value: 9.10786699107867
          - type: precision
            value: 7.985485722712
          - type: recall
            value: 14.5985401459854
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mhr-eng)
          config: mhr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.7
          - type: f1
            value: 3.5188978346475572
          - type: precision
            value: 3.158298308588556
          - type: recall
            value: 5.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dan-eng)
          config: dan-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 30.5
          - type: f1
            value: 25.997416905156033
          - type: precision
            value: 24.596070762988056
          - type: recall
            value: 30.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ell-eng)
          config: ell-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.700000000000001
          - type: f1
            value: 9.498482945625803
          - type: precision
            value: 8.987285930402825
          - type: recall
            value: 11.700000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (amh-eng)
          config: amh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.333333333333332
          - type: f1
            value: 5.745982981006023
          - type: precision
            value: 5.401133186459273
          - type: recall
            value: 8.333333333333332
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pam-eng)
          config: pam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5
          - type: f1
            value: 3.085855110083055
          - type: precision
            value: 2.816700840061992
          - type: recall
            value: 5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hsb-eng)
          config: hsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.902691511387163
          - type: f1
            value: 6.435632935092832
          - type: precision
            value: 5.983137847614094
          - type: recall
            value: 8.902691511387163
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (srp-eng)
          config: srp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 15.5
          - type: f1
            value: 12.91642697840956
          - type: precision
            value: 12.27655802325753
          - type: recall
            value: 15.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (epo-eng)
          config: epo-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.6
          - type: f1
            value: 8.25444066151791
          - type: precision
            value: 7.838679485283888
          - type: recall
            value: 10.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kzj-eng)
          config: kzj-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 3.5000000000000004
          - type: f1
            value: 2.339236097978308
          - type: precision
            value: 2.223062696511718
          - type: recall
            value: 3.5000000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (awa-eng)
          config: awa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 22.51082251082251
          - type: f1
            value: 16.74832651150451
          - type: precision
            value: 15.469328651146835
          - type: recall
            value: 22.51082251082251
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fao-eng)
          config: fao-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.16030534351145
          - type: f1
            value: 6.340001193595815
          - type: precision
            value: 5.839561202156622
          - type: recall
            value: 9.16030534351145
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mal-eng)
          config: mal-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 42.066957787481805
          - type: f1
            value: 36.61324818401623
          - type: precision
            value: 34.71464471808596
          - type: recall
            value: 42.066957787481805
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ile-eng)
          config: ile-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.5
          - type: f1
            value: 17.235331398320522
          - type: precision
            value: 16.204611769215212
          - type: recall
            value: 21.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bos-eng)
          config: bos-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 22.598870056497177
          - type: f1
            value: 15.808069297141552
          - type: precision
            value: 14.216539784336394
          - type: recall
            value: 22.598870056497177
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cor-eng)
          config: cor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 3.9
          - type: f1
            value: 1.9378227948724842
          - type: precision
            value: 1.7177968874340983
          - type: recall
            value: 3.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cat-eng)
          config: cat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.200000000000003
          - type: f1
            value: 15.962850129692935
          - type: precision
            value: 14.831492566514589
          - type: recall
            value: 20.200000000000003
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (eus-eng)
          config: eus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.700000000000001
          - type: f1
            value: 7.3770897326135305
          - type: precision
            value: 6.927006519505818
          - type: recall
            value: 9.700000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yue-eng)
          config: yue-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 63.5
          - type: f1
            value: 58.353888888888896
          - type: precision
            value: 56.41114468864469
          - type: recall
            value: 63.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swe-eng)
          config: swe-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 26
          - type: f1
            value: 21.75037437399202
          - type: precision
            value: 20.57120606116242
          - type: recall
            value: 26
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dtp-eng)
          config: dtp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 2.4
          - type: f1
            value: 1.7611348003539113
          - type: precision
            value: 1.6490144671379943
          - type: recall
            value: 2.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kat-eng)
          config: kat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 38.605898123324394
          - type: f1
            value: 33.00341324278513
          - type: precision
            value: 31.243423531164034
          - type: recall
            value: 38.605898123324394
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jpn-eng)
          config: jpn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.4
          - type: f1
            value: 52.341290679908326
          - type: precision
            value: 50.74419584500466
          - type: recall
            value: 57.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (csb-eng)
          config: csb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.462450592885375
          - type: f1
            value: 7.1683505686002045
          - type: precision
            value: 6.267734051287927
          - type: recall
            value: 11.462450592885375
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (xho-eng)
          config: xho-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.267605633802818
          - type: f1
            value: 8.034434678244908
          - type: precision
            value: 7.4930465143804
          - type: recall
            value: 11.267605633802818
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (orv-eng)
          config: orv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.029940119760479
          - type: f1
            value: 3.1094915169923047
          - type: precision
            value: 2.708633372048006
          - type: recall
            value: 5.029940119760479
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ind-eng)
          config: ind-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 36.7
          - type: f1
            value: 32.12717818306083
          - type: precision
            value: 30.816954398121375
          - type: recall
            value: 36.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tuk-eng)
          config: tuk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.896551724137931
          - type: f1
            value: 4.022988505747127
          - type: precision
            value: 3.3913545619534733
          - type: recall
            value: 6.896551724137931
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (max-eng)
          config: max-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 19.366197183098592
          - type: f1
            value: 13.728751930776578
          - type: precision
            value: 12.40776989741364
          - type: recall
            value: 19.366197183098592
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swh-eng)
          config: swh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.743589743589745
          - type: f1
            value: 6.368220492881125
          - type: precision
            value: 5.755926465392591
          - type: recall
            value: 9.743589743589745
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hin-eng)
          config: hin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 55.2
          - type: f1
            value: 49.45361290600652
          - type: precision
            value: 47.434083591084736
          - type: recall
            value: 55.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dsb-eng)
          config: dsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.6805845511482245
          - type: f1
            value: 4.493424007014965
          - type: precision
            value: 4.131033519879768
          - type: recall
            value: 6.6805845511482245
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ber-eng)
          config: ber-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.5
          - type: f1
            value: 2.488223360284137
          - type: precision
            value: 2.1928034718812546
          - type: recall
            value: 4.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tam-eng)
          config: tam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 31.921824104234524
          - type: f1
            value: 26.717853265084536
          - type: precision
            value: 25.08341519742171
          - type: recall
            value: 31.921824104234524
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slk-eng)
          config: slk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 17.4
          - type: f1
            value: 14.049848881932899
          - type: precision
            value: 13.225483025465493
          - type: recall
            value: 17.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tgl-eng)
          config: tgl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.9
          - type: f1
            value: 5.764422668778745
          - type: precision
            value: 5.318704596860335
          - type: recall
            value: 7.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ast-eng)
          config: ast-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.62204724409449
          - type: f1
            value: 17.735908011498562
          - type: precision
            value: 16.31534545023977
          - type: recall
            value: 23.62204724409449
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mkd-eng)
          config: mkd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 19.400000000000002
          - type: f1
            value: 16.688139723374675
          - type: precision
            value: 16.0446811984312
          - type: recall
            value: 19.400000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (khm-eng)
          config: khm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 19.390581717451525
          - type: f1
            value: 15.330085364864166
          - type: precision
            value: 14.23910323480727
          - type: recall
            value: 19.390581717451525
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ces-eng)
          config: ces-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.899999999999999
          - type: f1
            value: 11.89041342121772
          - type: precision
            value: 11.273006536745667
          - type: recall
            value: 14.899999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tzl-eng)
          config: tzl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 24.03846153846154
          - type: f1
            value: 20.606022267206477
          - type: precision
            value: 19.935897435897438
          - type: recall
            value: 24.03846153846154
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (urd-eng)
          config: urd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 29.599999999999998
          - type: f1
            value: 24.793469753676277
          - type: precision
            value: 23.43004941257573
          - type: recall
            value: 29.599999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ara-eng)
          config: ara-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 24.6
          - type: f1
            value: 19.561599234099237
          - type: precision
            value: 18.231733884473016
          - type: recall
            value: 24.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kor-eng)
          config: kor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 53.800000000000004
          - type: f1
            value: 48.1892730115302
          - type: precision
            value: 46.16164682539682
          - type: recall
            value: 53.800000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yid-eng)
          config: yid-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 3.6556603773584904
          - type: f1
            value: 2.2631181434426764
          - type: precision
            value: 2.082608234687079
          - type: recall
            value: 3.6556603773584904
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fin-eng)
          config: fin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16
          - type: f1
            value: 13.533088016975684
          - type: precision
            value: 12.965331925224502
          - type: recall
            value: 16
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tha-eng)
          config: tha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.69343065693431
          - type: f1
            value: 60.208146297669686
          - type: precision
            value: 58.18983631939836
          - type: recall
            value: 65.69343065693431
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (wuu-eng)
          config: wuu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.2
          - type: f1
            value: 73.25492063492062
          - type: precision
            value: 71.14833333333334
          - type: recall
            value: 78.2
      - task:
          type: Clustering
        dataset:
          type: slvnwhrl/tenkgnad-clustering-p2p
          name: MTEB TenKGnadClusteringP2P
          config: default
          split: test
          revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
        metrics:
          - type: v_measure
            value: 29.791089429037896
      - task:
          type: Clustering
        dataset:
          type: slvnwhrl/tenkgnad-clustering-s2s
          name: MTEB TenKGnadClusteringS2S
          config: default
          split: test
          revision: 6cddbe003f12b9b140aec477b583ac4191f01786
        metrics:
          - type: v_measure
            value: 11.270010272065322
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 55.805739403705914
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 50.50265410416623
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 65.6482
          - type: ap
            value: 11.625197643165249
          - type: f1
            value: 50.23643212069197
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 57.41086587436334
          - type: f1
            value: 57.58586420979367
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 26.543120146469633
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 81.49848006198962
          - type: cos_sim_ap
            value: 58.06838035805121
          - type: cos_sim_f1
            value: 55.897019598747534
          - type: cos_sim_precision
            value: 49.86550796606662
          - type: cos_sim_recall
            value: 63.58839050131926
          - type: dot_accuracy
            value: 81.49848006198962
          - type: dot_ap
            value: 58.06837481847699
          - type: dot_f1
            value: 55.897019598747534
          - type: dot_precision
            value: 49.86550796606662
          - type: dot_recall
            value: 63.58839050131926
          - type: euclidean_accuracy
            value: 81.49848006198962
          - type: euclidean_ap
            value: 58.06838167667462
          - type: euclidean_f1
            value: 55.897019598747534
          - type: euclidean_precision
            value: 49.86550796606662
          - type: euclidean_recall
            value: 63.58839050131926
          - type: manhattan_accuracy
            value: 81.43291410860107
          - type: manhattan_ap
            value: 57.83294460595276
          - type: manhattan_f1
            value: 55.628827131417815
          - type: manhattan_precision
            value: 50.233943002977455
          - type: manhattan_recall
            value: 62.321899736147756
          - type: max_accuracy
            value: 81.49848006198962
          - type: max_ap
            value: 58.06838167667462
          - type: max_f1
            value: 55.897019598747534
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.24725423991929
          - type: cos_sim_ap
            value: 82.09462792672173
          - type: cos_sim_f1
            value: 74.30311032863851
          - type: cos_sim_precision
            value: 70.95124684785654
          - type: cos_sim_recall
            value: 77.98737295965506
          - type: dot_accuracy
            value: 87.24725423991929
          - type: dot_ap
            value: 82.0946313711965
          - type: dot_f1
            value: 74.30311032863851
          - type: dot_precision
            value: 70.95124684785654
          - type: dot_recall
            value: 77.98737295965506
          - type: euclidean_accuracy
            value: 87.24725423991929
          - type: euclidean_ap
            value: 82.09462900001712
          - type: euclidean_f1
            value: 74.30311032863851
          - type: euclidean_precision
            value: 70.95124684785654
          - type: euclidean_recall
            value: 77.98737295965506
          - type: manhattan_accuracy
            value: 87.30934916753988
          - type: manhattan_ap
            value: 82.22847590036976
          - type: manhattan_f1
            value: 74.5143604081188
          - type: manhattan_precision
            value: 70.50779907922765
          - type: manhattan_recall
            value: 79.00369571912535
          - type: max_accuracy
            value: 87.30934916753988
          - type: max_ap
            value: 82.22847590036976
          - type: max_f1
            value: 74.5143604081188
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 44.800000000000004
          - type: map_at_10
            value: 54.806
          - type: map_at_100
            value: 55.477
          - type: map_at_1000
            value: 55.498999999999995
          - type: map_at_3
            value: 52.333
          - type: map_at_5
            value: 53.933
          - type: mrr_at_1
            value: 44.800000000000004
          - type: mrr_at_10
            value: 54.806
          - type: mrr_at_100
            value: 55.477
          - type: mrr_at_1000
            value: 55.498999999999995
          - type: mrr_at_3
            value: 52.333
          - type: mrr_at_5
            value: 53.933
          - type: ndcg_at_1
            value: 44.800000000000004
          - type: ndcg_at_10
            value: 59.75899999999999
          - type: ndcg_at_100
            value: 63.171
          - type: ndcg_at_1000
            value: 63.818
          - type: ndcg_at_3
            value: 54.790000000000006
          - type: ndcg_at_5
            value: 57.652
          - type: precision_at_1
            value: 44.800000000000004
          - type: precision_at_10
            value: 7.53
          - type: precision_at_100
            value: 0.9159999999999999
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 20.633000000000003
          - type: precision_at_5
            value: 13.76
          - type: recall_at_1
            value: 44.800000000000004
          - type: recall_at_10
            value: 75.3
          - type: recall_at_100
            value: 91.60000000000001
          - type: recall_at_1000
            value: 96.8
          - type: recall_at_3
            value: 61.9
          - type: recall_at_5
            value: 68.8
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 84.33999999999999
          - type: ap
            value: 65.75892461630445
          - type: f1
            value: 82.55845192469975

license: apache-2.0