results

This model is a fine-tuned version of facebook/bart-large-mnli on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • F1: 0.9412
  • Precision: 0.9524
  • Recall: 0.9302
  • Accuracy: 0.9333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.5809 0.14 10 0.3912 0.8671 0.8621 0.8721 0.8467
0.3659 0.28 20 0.3689 0.8790 0.9718 0.8023 0.8733
0.3805 0.42 30 0.2890 0.9133 0.9080 0.9186 0.9
0.4068 0.56 40 0.3249 0.9068 0.9733 0.8488 0.9
0.3183 0.69 50 0.2801 0.9133 0.9080 0.9186 0.9
0.1929 0.83 60 0.2832 0.9123 0.9176 0.9070 0.9
0.2861 0.97 70 0.2883 0.9195 0.9091 0.9302 0.9067
0.209 1.11 80 0.3000 0.9222 0.9506 0.8953 0.9133
0.2192 1.25 90 0.2845 0.9176 0.9286 0.9070 0.9067
0.3116 1.39 100 0.2520 0.9249 0.9195 0.9302 0.9133
0.2512 1.53 110 0.2650 0.9222 0.9506 0.8953 0.9133
0.1774 1.67 120 0.2571 0.9231 0.9398 0.9070 0.9133
0.1126 1.81 130 0.2668 0.9364 0.9310 0.9419 0.9267
0.2379 1.94 140 0.3075 0.9012 0.9605 0.8488 0.8933
0.2753 2.08 150 0.2254 0.9240 0.9294 0.9186 0.9133
0.1727 2.22 160 0.2707 0.9310 0.9205 0.9419 0.92
0.224 2.36 170 0.3118 0.9057 0.9863 0.8372 0.9
0.2056 2.5 180 0.2673 0.9302 0.9302 0.9302 0.92
0.2274 2.64 190 0.2515 0.9302 0.9302 0.9302 0.92
0.1193 2.78 200 0.2250 0.9357 0.9412 0.9302 0.9267
0.2806 2.92 210 0.2268 0.9286 0.9512 0.9070 0.92
0.1272 3.06 220 0.2031 0.9349 0.9518 0.9186 0.9267
0.1879 3.19 230 0.1730 0.9480 0.9425 0.9535 0.94
0.1341 3.33 240 0.1867 0.9419 0.9419 0.9419 0.9333
0.1376 3.47 250 0.2628 0.9341 0.9630 0.9070 0.9267
0.1599 3.61 260 0.2484 0.9405 0.9634 0.9186 0.9333
0.1899 3.75 270 0.1847 0.9480 0.9425 0.9535 0.94
0.0828 3.89 280 0.1869 0.9412 0.9524 0.9302 0.9333
0.1025 4.03 290 0.1876 0.9349 0.9518 0.9186 0.9267
0.118 4.17 300 0.1811 0.9419 0.9419 0.9419 0.9333
0.1475 4.31 310 0.1901 0.9294 0.9405 0.9186 0.92
0.1354 4.44 320 0.1805 0.9357 0.9412 0.9302 0.9267
0.1444 4.58 330 0.1706 0.9540 0.9432 0.9651 0.9467
0.1068 4.72 340 0.1693 0.9480 0.9425 0.9535 0.94
0.0875 4.86 350 0.1715 0.9412 0.9524 0.9302 0.9333
0.0922 5.0 360 0.1726 0.9412 0.9524 0.9302 0.9333

Framework versions

  • PEFT 0.9.0
  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
21
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for CoCoRooXin/finetuned_bart_mnli

Adapter
(5)
this model