nreimers's picture
add files
af99964
---
tags:
- mteb
model-index:
- name: embed-english-light-v3.0
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 78.62686567164178
- type: ap
value: 43.50072127690769
- type: f1
value: 73.12414870629323
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 94.795
- type: ap
value: 92.14178233328848
- type: f1
value: 94.79269356571955
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 51.016000000000005
- type: f1
value: 48.9266470039522
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 50.806
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 46.19304218375896
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 37.57785041962193
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 60.11396377106911
- type: mrr
value: 72.9068284746955
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 82.59354737468067
- type: cos_sim_spearman
value: 81.71933190993215
- type: euclidean_pearson
value: 81.39212345994983
- type: euclidean_spearman
value: 81.71933190993215
- type: manhattan_pearson
value: 81.29257414603093
- type: manhattan_spearman
value: 81.80246633432691
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 79.69805194805193
- type: f1
value: 79.07431143559548
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.973417975095934
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 34.51608057107556
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 46.615
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 45.383
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 57.062999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 37.201
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 27.473
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 41.868
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 42.059000000000005
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 38.885416666666664
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 32.134
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 28.052
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 38.237
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 37.875
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 32.665
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 28.901
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 41.028
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 52.745
- type: f1
value: 46.432564522368054
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 87.64
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 38.834999999999994
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 66.793
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 92.16680000000001
- type: ap
value: 88.9326260956379
- type: f1
value: 92.16197209455585
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 41.325
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.62517099863202
- type: f1
value: 93.3852826127328
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 64.93388052895577
- type: f1
value: 48.035548201830366
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.01344989912577
- type: f1
value: 68.01236893966525
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.34498991257564
- type: f1
value: 75.72876911765213
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 37.66326759167091
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 33.53562430544494
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.86814320224619
- type: mrr
value: 33.02567757581291
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 33.649
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 57.994
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 88.115
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 53.4970929237201
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 63.59086757472922
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 18.098
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.05019841005287
- type: cos_sim_spearman
value: 79.65240734965128
- type: euclidean_pearson
value: 82.33894047327843
- type: euclidean_spearman
value: 79.65240666088022
- type: manhattan_pearson
value: 82.33098051639543
- type: manhattan_spearman
value: 79.5592521956291
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 81.28561469269728
- type: cos_sim_spearman
value: 72.6022866501722
- type: euclidean_pearson
value: 77.89616448619745
- type: euclidean_spearman
value: 72.6022866429173
- type: manhattan_pearson
value: 77.9073648819866
- type: manhattan_spearman
value: 72.6928162672852
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 82.48271297318195
- type: cos_sim_spearman
value: 82.87639489647019
- type: euclidean_pearson
value: 82.24654676315204
- type: euclidean_spearman
value: 82.87642765399856
- type: manhattan_pearson
value: 82.19673632886851
- type: manhattan_spearman
value: 82.822727205448
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.74140104895864
- type: cos_sim_spearman
value: 79.74024708732993
- type: euclidean_pearson
value: 82.50081856448949
- type: euclidean_spearman
value: 79.74024708732993
- type: manhattan_pearson
value: 82.36588991657912
- type: manhattan_spearman
value: 79.59022658604357
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.30124436614311
- type: cos_sim_spearman
value: 86.97688974734349
- type: euclidean_pearson
value: 86.36868875097032
- type: euclidean_spearman
value: 86.97688974734349
- type: manhattan_pearson
value: 86.37787059133234
- type: manhattan_spearman
value: 86.96666693570158
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.27590066451398
- type: cos_sim_spearman
value: 84.40811627278994
- type: euclidean_pearson
value: 83.77341566536141
- type: euclidean_spearman
value: 84.40811627278994
- type: manhattan_pearson
value: 83.72567664904311
- type: manhattan_spearman
value: 84.42172336387632
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.13791942173916
- type: cos_sim_spearman
value: 89.22016928873572
- type: euclidean_pearson
value: 89.43583792557924
- type: euclidean_spearman
value: 89.22016928873572
- type: manhattan_pearson
value: 89.47307915863284
- type: manhattan_spearman
value: 89.20752264220539
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.92003328655028
- type: cos_sim_spearman
value: 65.42027229611072
- type: euclidean_pearson
value: 66.68765284942059
- type: euclidean_spearman
value: 65.42027229611072
- type: manhattan_pearson
value: 66.85383496796447
- type: manhattan_spearman
value: 65.53490117706689
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.97445894753297
- type: cos_sim_spearman
value: 86.57651994952795
- type: euclidean_pearson
value: 86.7061296897819
- type: euclidean_spearman
value: 86.57651994952795
- type: manhattan_pearson
value: 86.66411668551642
- type: manhattan_spearman
value: 86.53200653755397
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 81.62235389081138
- type: mrr
value: 94.65811965811966
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 66.687
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.86435643564356
- type: cos_sim_ap
value: 96.59150882873165
- type: cos_sim_f1
value: 93.07030854830552
- type: cos_sim_precision
value: 94.16581371545547
- type: cos_sim_recall
value: 92.0
- type: dot_accuracy
value: 99.86435643564356
- type: dot_ap
value: 96.59150882873165
- type: dot_f1
value: 93.07030854830552
- type: dot_precision
value: 94.16581371545547
- type: dot_recall
value: 92.0
- type: euclidean_accuracy
value: 99.86435643564356
- type: euclidean_ap
value: 96.59150882873162
- type: euclidean_f1
value: 93.07030854830552
- type: euclidean_precision
value: 94.16581371545547
- type: euclidean_recall
value: 92.0
- type: manhattan_accuracy
value: 99.86336633663366
- type: manhattan_ap
value: 96.58123246795022
- type: manhattan_f1
value: 92.9591836734694
- type: manhattan_precision
value: 94.89583333333333
- type: manhattan_recall
value: 91.10000000000001
- type: max_accuracy
value: 99.86435643564356
- type: max_ap
value: 96.59150882873165
- type: max_f1
value: 93.07030854830552
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 62.938055854344455
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.479716154538224
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.75827388766867
- type: mrr
value: 51.65291305916306
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.81419421090782
- type: cos_sim_spearman
value: 31.287464634068492
- type: dot_pearson
value: 31.814195589790177
- type: dot_spearman
value: 31.287464634068492
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 79.364
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 31.927
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 73.0414
- type: ap
value: 16.06723077348852
- type: f1
value: 56.73470421774399
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 64.72269383135257
- type: f1
value: 64.70143593421479
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 46.06343037695152
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.59337187816654
- type: cos_sim_ap
value: 72.23331527941706
- type: cos_sim_f1
value: 67.22915138175593
- type: cos_sim_precision
value: 62.64813126709207
- type: cos_sim_recall
value: 72.53298153034301
- type: dot_accuracy
value: 85.59337187816654
- type: dot_ap
value: 72.23332517262921
- type: dot_f1
value: 67.22915138175593
- type: dot_precision
value: 62.64813126709207
- type: dot_recall
value: 72.53298153034301
- type: euclidean_accuracy
value: 85.59337187816654
- type: euclidean_ap
value: 72.23331029091486
- type: euclidean_f1
value: 67.22915138175593
- type: euclidean_precision
value: 62.64813126709207
- type: euclidean_recall
value: 72.53298153034301
- type: manhattan_accuracy
value: 85.4622399713894
- type: manhattan_ap
value: 72.05180729774357
- type: manhattan_f1
value: 67.12683347713546
- type: manhattan_precision
value: 62.98866527874162
- type: manhattan_recall
value: 71.84696569920844
- type: max_accuracy
value: 85.59337187816654
- type: max_ap
value: 72.23332517262921
- type: max_f1
value: 67.22915138175593
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.08681647067955
- type: cos_sim_ap
value: 86.31913876322757
- type: cos_sim_f1
value: 78.678007640741
- type: cos_sim_precision
value: 73.95988616343678
- type: cos_sim_recall
value: 84.03911302740991
- type: dot_accuracy
value: 89.08681647067955
- type: dot_ap
value: 86.31913976395484
- type: dot_f1
value: 78.678007640741
- type: dot_precision
value: 73.95988616343678
- type: dot_recall
value: 84.03911302740991
- type: euclidean_accuracy
value: 89.08681647067955
- type: euclidean_ap
value: 86.31913869004254
- type: euclidean_f1
value: 78.678007640741
- type: euclidean_precision
value: 73.95988616343678
- type: euclidean_recall
value: 84.03911302740991
- type: manhattan_accuracy
value: 89.06547133930997
- type: manhattan_ap
value: 86.24122868846949
- type: manhattan_f1
value: 78.74963094183643
- type: manhattan_precision
value: 75.62375956903884
- type: manhattan_recall
value: 82.14505697566985
- type: max_accuracy
value: 89.08681647067955
- type: max_ap
value: 86.31913976395484
- type: max_f1
value: 78.74963094183643
---
# Cohere embed-english-light-v3.0
This repository contains the tokenizer for the Cohere `embed-english-light-v3.0` model. See our blogpost [Cohere Embed V3](https://txt.cohere.com/introducing-embed-v3/) for more details on this model.
You can use the embedding model either via the Cohere API, AWS SageMaker or in your private deployments.
## Usage Cohere API
The following code snippet shows the usage of the Cohere API. Install the cohere SDK via:
```
pip install -U cohere
```
Get your free API key on: www.cohere.com
```python
# This snippet shows and example how to use the Cohere Embed V3 models for semantic search.
# Make sure to have the Cohere SDK in at least v4.30 install: pip install -U cohere
# Get your API key from: www.cohere.com
import cohere
import numpy as np
cohere_key = "{YOUR_COHERE_API_KEY}" #Get your API key from www.cohere.com
co = cohere.Client(cohere_key)
docs = ["The capital of France is Paris",
"PyTorch is a machine learning framework based on the Torch library.",
"The average cat lifespan is between 13-17 years"]
#Encode your documents with input type 'search_document'
doc_emb = co.embed(docs, input_type="search_document", model="embed-english-light-v3.0").embeddings
doc_emb = np.asarray(doc_emb)
#Encode your query with input type 'search_query'
query = "What is Pytorch"
query_emb = co.embed([query], input_type="search_query", model="embed-english-light-v3.0").embeddings
query_emb = np.asarray(query_emb)
query_emb.shape
#Compute the dot product between query embedding and document embedding
scores = np.dot(query_emb, doc_emb.T)[0]
#Find the highest scores
max_idx = np.argsort(-scores)
print(f"Query: {query}")
for idx in max_idx:
print(f"Score: {scores[idx]:.2f}")
print(docs[idx])
print("--------")
```
## Usage AWS SageMaker
The embedding model can be privately deployed in your AWS Cloud using our [AWS SageMaker marketplace offering](https://aws.amazon.com/marketplace/pp/prodview-z6huxszcqc25i). It runs privately in your VPC, with latencies as low as 5ms for query encoding.
## Usage AWS Bedrock
Soon the model will also be available via AWS Bedrock. Stay tuned
## Private Deployment
You want to run the model on your own hardware? [Contact Sales](https://cohere.com/contact-sales) to learn more.
## Supported Languages
This model was trained on nearly 1B English training pairs.
Evaluation results can be found in the [Embed V3.0 Benchmark Results spreadsheet](https://docs.google.com/spreadsheets/d/1w7gnHWMDBdEUrmHgSfDnGHJgVQE5aOiXCCwO3uNH_mI/edit?usp=sharing).