SentenceTransformer
This is a sentence-transformers model trained on the sci_gen_colbert_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: inf tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(30522, 768, mode='mean')
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciGenNomicEmbedStatic")
# Run inference
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
SciGen-Eval-Set
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8918 |
cosine_accuracy@3 | 0.9308 |
cosine_accuracy@5 | 0.9481 |
cosine_accuracy@10 | 0.9668 |
cosine_precision@1 | 0.8918 |
cosine_precision@3 | 0.3103 |
cosine_precision@5 | 0.1896 |
cosine_precision@10 | 0.0967 |
cosine_recall@1 | 0.8918 |
cosine_recall@3 | 0.9308 |
cosine_recall@5 | 0.9481 |
cosine_recall@10 | 0.9668 |
cosine_ndcg@10 | 0.9279 |
cosine_mrr@10 | 0.9157 |
cosine_map@100 | 0.9171 |
Training Details
Training Dataset
sci_gen_colbert_triplets
- Dataset: sci_gen_colbert_triplets at 44071bd
- Size: 35,934 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 20 characters
- mean: 50.28 characters
- max: 120 characters
- min: 0 characters
- mean: 206.53 characters
- max: 401 characters
- min: 96 characters
- mean: 209.67 characters
- max: 418 characters
- Samples:
query positive negative Previous research: highlighting negative outcomes
Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers.
This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.
Synthesising sources: contrasting evidence or ideas
Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001).
Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.
Previous research: Approaches taken
Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988).
The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 384, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
sci_gen_colbert_triplets
- Dataset: sci_gen_colbert_triplets at 44071bd
- Size: 4,492 evaluation samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 20 characters
- mean: 50.59 characters
- max: 120 characters
- min: 98 characters
- mean: 203.98 characters
- max: 448 characters
- min: 36 characters
- mean: 204.82 characters
- max: 422 characters
- Samples:
query positive negative Providing background information: reference to the purpose of the study
This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains.
Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.
Providing background information: reference to the literature
According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates.
This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.
General comments on the relevant literature
Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties.
Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 384, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4096per_device_eval_batch_size
: 4096learning_rate
: 0.02num_train_epochs
: 50warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4096per_device_eval_batch_size
: 4096per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.02weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
---|---|---|---|---|
-1 | -1 | - | - | 0.0860 |
1.1111 | 10 | 64.4072 | 61.6146 | 0.0919 |
2.2222 | 20 | 60.2737 | 56.0852 | 0.1130 |
3.3333 | 30 | 53.8742 | 50.1738 | 0.1611 |
4.4444 | 40 | 47.9741 | 45.6099 | 0.2666 |
5.5556 | 50 | 43.3533 | 42.3335 | 0.4579 |
6.6667 | 60 | 39.8746 | 40.0990 | 0.6244 |
7.7778 | 70 | 37.4077 | 38.4205 | 0.7223 |
8.8889 | 80 | 35.3558 | 37.0939 | 0.7847 |
10.0 | 90 | 33.5816 | 36.0200 | 0.8248 |
11.1111 | 100 | 32.4019 | 35.1148 | 0.8469 |
12.2222 | 110 | 31.3427 | 34.3602 | 0.8658 |
13.3333 | 120 | 30.4578 | 33.7324 | 0.8788 |
14.4444 | 130 | 29.7019 | 33.2120 | 0.8882 |
15.5556 | 140 | 29.1315 | 32.7679 | 0.8963 |
16.6667 | 150 | 28.6226 | 32.3942 | 0.9016 |
17.7778 | 160 | 28.195 | 32.0693 | 0.9061 |
18.8889 | 170 | 27.8242 | 31.7708 | 0.9096 |
20.0 | 180 | 27.373 | 31.5369 | 0.9137 |
21.1111 | 190 | 27.2436 | 31.3331 | 0.9168 |
22.2222 | 200 | 27.0084 | 31.1571 | 0.9188 |
23.3333 | 210 | 26.8023 | 31.0074 | 0.9205 |
24.4444 | 220 | 26.6754 | 30.8726 | 0.9217 |
25.5556 | 230 | 26.4875 | 30.7545 | 0.9224 |
26.6667 | 240 | 26.3846 | 30.6494 | 0.9236 |
27.7778 | 250 | 26.2546 | 30.5660 | 0.9243 |
28.8889 | 260 | 26.1752 | 30.4826 | 0.9248 |
30.0 | 270 | 25.9247 | 30.4060 | 0.9252 |
31.1111 | 280 | 25.9807 | 30.3540 | 0.9261 |
32.2222 | 290 | 25.9153 | 30.3040 | 0.9262 |
33.3333 | 300 | 25.8643 | 30.2585 | 0.9265 |
34.4444 | 310 | 25.7946 | 30.2183 | 0.9270 |
35.5556 | 320 | 25.7723 | 30.1799 | 0.9272 |
36.6667 | 330 | 25.7091 | 30.1539 | 0.9275 |
37.7778 | 340 | 25.6655 | 30.1296 | 0.9275 |
38.8889 | 350 | 25.6465 | 30.1120 | 0.9276 |
40.0 | 360 | 25.4654 | 30.0834 | 0.9279 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.0
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train Corran/SciGenNomicEmbedStatic
Evaluation results
- Cosine Accuracy@1 on SciGen Eval Setself-reported0.892
- Cosine Accuracy@3 on SciGen Eval Setself-reported0.931
- Cosine Accuracy@5 on SciGen Eval Setself-reported0.948
- Cosine Accuracy@10 on SciGen Eval Setself-reported0.967
- Cosine Precision@1 on SciGen Eval Setself-reported0.892
- Cosine Precision@3 on SciGen Eval Setself-reported0.310
- Cosine Precision@5 on SciGen Eval Setself-reported0.190
- Cosine Precision@10 on SciGen Eval Setself-reported0.097
- Cosine Recall@1 on SciGen Eval Setself-reported0.892
- Cosine Recall@3 on SciGen Eval Setself-reported0.931