See axolotl config
axolotl version: 0.4.0
base_model: Crystalcareai/CrystalMistral-13b
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
datasets:
- path: Crystalcareai/truthyDPO-intel
split: train
type: chatml.intel
- path: Crystalcareai/distilabel-intel-orca-dpo-pairs_intel_format
split: train
type: chatml.intel
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./qlora-out
## You can optionally freeze the entire model and unfreeze a subset of parameters
unfrozen_parameters:
# - lm_head.*
# - model.embed_tokens.*
# - model.layers.2[0-9]+.block_sparse_moe.gate.*
# - model.layers.2[0-9]+.block_sparse_moe.experts.*
# - model.layers.3[0-9]+.block_sparse_moe.gate.*
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
#lora_target_modules:
# - gate
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - w1
# - w2
# - w3
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
qlora-out
This model is a fine-tuned version of Crystalcareai/CrystalMistral-13b on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 217
Training results
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Crystalcareai/CrystalMistral-2x7B-Lora
Base model
eren23/dpo-binarized-NeuralTrix-7B
Finetuned
Crystalcareai/CrystalMistral-14b