|
--- |
|
license: mit |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Open-Orca/Mistral-7B-OpenOrca |
|
- Crystalcareai/Evol-Mistral |
|
base_model: |
|
- Open-Orca/Mistral-7B-OpenOrca |
|
- Crystalcareai/Evol-Mistral |
|
--- |
|
|
|
# Evolorxa-14b |
|
|
|
Evolorxa-14b is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) |
|
* [Crystalcareai/Evol-Mistral](https://huggingface.co/Crystalcareai/Evol-Mistral) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: Open-Orca/Mistral-7B-OpenOrca |
|
layer_range: [0, 32] |
|
- model: Crystalcareai/Evol-Mistral |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: Open-Orca/Mistral-7B-OpenOrca |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
experts: |
|
- source_model: Open-Orca/Mistral-7B-OpenOrca |
|
positive_prompts: |
|
- "chat" |
|
- "reasoning" |
|
- "Why would" |
|
- "explain" |
|
- source_model: Crystalcareai/Evol-Mistral |
|
positive_prompts: |
|
- "instruction" |
|
- "create a" |
|
- "You must" |
|
- "Your job" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Crystalcareai/Evolorxa-14b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |