File size: 63,370 Bytes
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b5642
 
 
008f139
 
f6b5642
 
 
 
008f139
 
 
 
 
 
 
f6b5642
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f7601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de5917
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de5917
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc4ccd
 
 
 
 
 
 
 
 
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc4ccd
cf62fb2
 
 
 
 
 
 
 
 
 
 
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf62fb2
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877429a
 
 
 
 
008f139
 
 
 
 
 
 
 
1b5a82b
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc4ccd
008f139
 
 
cfc4ccd
 
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8825292
008f139
 
 
 
 
e6d7d0e
 
 
008f139
 
e6d7d0e
008f139
e6d7d0e
008f139
e6d7d0e
008f139
e6d7d0e
 
 
706595d
 
008f139
e6d7d0e
008f139
e6d7d0e
8825292
 
008f139
 
 
 
 
cfc4ccd
 
 
008f139
cfc4ccd
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc4ccd
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de5917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877429a
 
 
 
 
 
 
 
5f967cc
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877429a
 
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877429a
 
 
 
008f139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Gemmoe model."""

import math
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import (
    _prepare_4d_causal_attention_mask,
)
from transformers.modeling_outputs import SequenceClassifierOutputWithPast, MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
from transformers.utils.import_utils import is_torch_fx_available
from .configuration_gemmoe import GemmoeConfig

from math import sqrt as math_sqrt


if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa


# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
    if not is_torch_greater_or_equal_than_1_13:
        import torch.fx

    _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "GemmoeConfig"

def load_balancing_loss_func(
    gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
) -> float:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        attention_mask (`torch.Tensor`, None):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.
        num_experts (`int`, *optional*):
            Number of experts

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return 0

    if isinstance(gate_logits, tuple):
        compute_device = gate_logits[0].device
        concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)

    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)

    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)

    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)

    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.mean(expert_mask.float(), dim=0)

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.mean(routing_weights, dim=0)
    else:
        batch_size, sequence_length = attention_mask.shape
        num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)

        # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (
            attention_mask[None, :, :, None, None]
            .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
            .reshape(-1, top_k, num_experts)
            .to(compute_device)
        )

        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
            expert_attention_mask, dim=0
        )

        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[None, :, :, None]
            .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
            .reshape(-1, num_experts)
            .to(compute_device)
        )

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
            router_per_expert_attention_mask, dim=0
        )

    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
    return overall_loss * num_experts



def approx_gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * x**3)))

def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )



class GemmoeRMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.zeros(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * (self.weight + 1)

ALL_LAYERNORM_LAYERS.append(GemmoeRMSNorm)

class GemmoeRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype())

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        freq_exponents = (2.0 / self.dim) * (
            torch.arange(self.dim // 2, dtype=torch.int64, device="cpu").float()
        )
        timescale = self.base ** freq_exponents
        positions = torch.arange(self.max_seq_len_cached, device="cpu", dtype=torch.int64).float()
        radians_new = positions[..., None] / timescale[None, None, :]
        radians_new = radians_new.squeeze(0)
        emb = torch.cat((radians_new, radians_new), dim=-1)
        cos = emb.cos().to(device=device, non_blocking=True)
        sin = emb.sin().to(device=device, non_blocking=True)
        self.register_buffer("cos_cached", cos, persistent=False)
        self.register_buffer("sin_cached", sin, persistent=False)

    def forward(self, x, position_ids=None, seq_len=None):
        if seq_len is None:
            seq_len = x.size(2)
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
        return (
            self.cos_cached[:seq_len],
            self.sin_cached[:seq_len],
        )

def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
    """Applies Rotary Position Embedding to the query and key tensors."""
    seq_len, dim = q.shape[-2], q.shape[-1]
    cos = cos[:seq_len].view(1, 1, seq_len, dim)
    sin = sin[:seq_len].view(1, 1, seq_len, dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

class GemmoeAttention(nn.Module):
    """
    Multi-headed attention module for Gemmoe model.

    Args:
        config (GemmoeConfig): The configuration object for the Gemmoe model.
        layer_idx (Optional[int]): The index of the layer. Default is None.
    """

    def __init__(self, config: GemmoeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )
        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = config.head_dim
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True

        if self.hidden_size % self.num_heads != 0:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self.rotary_emb = GemmoeRotaryEmbedding(
				self.head_dim,
				max_position_embeddings=self.max_position_embeddings,
				base=self.rope_theta,
			)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """
        Forward pass of the attention module.

        Args:
            hidden_states (torch.Tensor): The input hidden states.
            attention_mask (Optional[torch.Tensor]): The attention mask. Default is None.
            position_ids (Optional[torch.LongTensor]): The position IDs. Default is None.
            past_key_value (Optional[Cache]): The past key-value cache. Default is None.
            output_attentions (bool): Whether to output the attention weights. Default is False.
            use_cache (bool): Whether to use caching. Default is False.
            cache_position (Optional[torch.LongTensor]): The cache position. Default is None.
            **kwargs: Additional keyword arguments.

        Returns:
            Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
                - The output hidden states.
                - The attention weights (if `output_attentions=True`).
                - The past key-value cache (if `use_cache=True`).
        """
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        past_key_value = getattr(self, "past_key_value", past_key_value)

        cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; position_ids needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

            key_states = self.repeat_kv(key_states, self.num_key_value_groups)
            value_states = self.repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:  # no matter the length, we just slice it
            if cache_position is not None:
                causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
            else:
                causal_mask = attention_mask
            attn_weights = attn_weights + causal_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)

        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

class GemmoeFlashAttention2(GemmoeAttention):
    """
    Gemmoe flash attention module. This module inherits from `GemmoeAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # TODO: Remove this attribute once Flash Attention for RoCm is bumped to 2.1.
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        output_attentions = False

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # Flash attention requires the input to have the shape
        # batch_size x seq_length x head_dim x hidden_dim
        # therefore we just need to keep the original shape
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)

        past_key_value = getattr(self, "past_key_value", past_key_value)
        if past_key_value is not None:
            # sin and cos are specific to RoPE models; position_ids needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
        # to be able to avoid many of these transpose/reshape/view.
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        dropout_rate = self.attention_dropout if self.training else 0.0

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (GemmoeRMSNorm handles it correctly)
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )
            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = self._flash_attention_forward(
            query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
        )

        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

    def _flash_attention_forward(
        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in GemmoeFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )
            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )
            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
            )

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)

        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )

class GemmoeSdpaAttention(GemmoeAttention):
    """
    Gemmoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    GemmoeAttention as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    def repeat_kv(self, x, n_rep):
        """
        This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
        num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
        """
        batch, num_key_value_heads, slen, head_dim = x.shape
        if n_rep == 1:
            return x
        x = x[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
        return x.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            # logger.warning_once(
            "GemmoeModel is using GemmoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            # )
            
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
            )
            
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)

        past_key_value = getattr(self, "past_key_value", past_key_value)
        if past_key_value is not None:
            # sin and cos are specific to RoPE models; position_ids needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = self.repeat_kv(key_states, self.num_key_value_groups)
        value_states = self.repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None and cache_position is not None:
            causal_mask = causal_mask[:, :, cache_position, : key_states.shape[-2]]
            
            # Cast query, key, and value states to the same dtype (bf16)
            query_states = query_states.to(dtype=torch.bfloat16)
            key_states = key_states.to(dtype=torch.bfloat16)
            value_states = value_states.to(dtype=torch.bfloat16)

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and causal_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)
        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value

GEMMOE_ATTENTION_CLASSES = {
	"eager": GemmoeAttention,
	"flash_attention_2": GemmoeFlashAttention2,
	"sdpa": GemmoeSdpaAttention,
	}

class GemmoeBlockSparseTop2MLP(nn.Module):
    def __init__(self, config: GemmoeConfig):
        super().__init__()
        self.ffn_dim = config.intermediate_size
        self.hidden_dim = config.hidden_size

        self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
        self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)

        self.act_fn = approx_gelu

    def forward(self, hidden_states):
        current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
        current_hidden_states = self.w2(current_hidden_states)
        return current_hidden_states


class GemmoeSparseMoeBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.ffn_dim = config.intermediate_size
        self.num_experts = config.num_local_experts
        self.top_k = 2

        # gating
        self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)

        self.experts = nn.ModuleList([GemmoeBlockSparseTop2MLP(config) for _ in range(self.num_experts)])

    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)

        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.gate(hidden_states)
        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
        topk_weight /= topk_weight.sum(dim=-1, keepdim=True)

        # we cast back to the input dtype
        topk_weight = topk_weight.to(hidden_states.dtype)

        hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0)

        y = torch.empty_like(hidden_states)

        flat_topk_idx = topk_idx.view(-1)
        for i in range(self.num_experts):
            expert = self.experts[i]
            expert_output = expert(hidden_states[flat_topk_idx == i])
            y[flat_topk_idx == i] = expert_output.to(y.dtype)  # Cast expert_output to the same dtype as y

        y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)

        final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits

    
class GemmoeDecoderLayer(nn.Module):
    def __init__(self, config: GemmoeConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = GEMMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)

        self.block_sparse_moe = GemmoeSparseMoeBlock(config)
        self.input_layernorm = GemmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = GemmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
                should not be returned during inference.
        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states, router_logits = self.block_sparse_moe(hidden_states)
        hidden_states = residual + hidden_states
    

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if output_router_logits:
            outputs += (router_logits,)

        return outputs

GEMMOE_START_DOCSTRING = r"""
This model inherits from [PreTrainedModel]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
"""

@add_start_docstrings(
"The bare Gemmoe Model outputting raw hidden-states without any specific head on top.",
GEMMOE_START_DOCSTRING,
)

class GemmoePreTrainedModel(PreTrainedModel):
	config_class = GemmoeConfig
	base_model_prefix = "model"
	supports_gradient_checkpointing = True
	_keep_in_fp32_modules = ["inv_freq", "rotary_emb", "cos_cached", "sin_cached"]
	_no_split_modules = ["GemmoeDecoderLayer"]
	_skip_keys_device_placement = ["past_key_values", "causal_mask"]
	_supports_flash_attn_2 = True
	_supports_sdpa = True
	_supports_cache_class = True
 
	def _init_weights(self, module):
		std = self.config.initializer_range
		if isinstance(module, nn.Linear):
			module.weight.data.normal_(mean=0.0, std=std)
			if module.bias is not None:
				module.bias.data.zero_()
		elif isinstance(module, nn.Embedding):
			module.weight.data.normal_(mean=0.0, std=std)
			if module.padding_idx is not None:
				module.weight.data[module.padding_idx].zero_()

	def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
		if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
			raise ValueError(
				"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
				"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
			)
		if max_cache_len > self.model.causal_mask.shape[-1] or self.device != self.model.causal_mask.device:
			causal_mask = torch.full((max_cache_len, max_cache_len), fill_value=1, device=self.device)
			self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)

		for layer in self.model.layers:
			weights = layer.self_attn.o_proj.weight
			layer.self_attn.past_key_value = cache_cls(
				self.config, max_batch_size, max_cache_len, device=weights.device, dtype=weights.dtype
			)

	def _reset_cache(self):
		for layer in self.model.layers:
			layer.self_attn.past_key_value = None

GEMMOE_INPUTS_DOCSTRING = r"""
Args:
input_ids (torch.LongTensor of shape (batch_size, sequence_length)):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
"""

@add_start_docstrings(
"The bare Gemmoe Model outputting raw hidden-states without any specific head on top.",
GEMMOE_START_DOCSTRING,
)

class GemmoeModel(GemmoePreTrainedModel):
	"""
	Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a [GemmoeDecoderLayer]Args:
		config: GemmoeConfig
	"""


	def __init__(self, config: GemmoeConfig):
		super().__init__(config)
		self.padding_idx = config.pad_token_id
		self.vocab_size = config.vocab_size

		self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
		self.layers = nn.ModuleList(
			[GemmoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
		)
          
		self.norm = GemmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

		self.gradient_checkpointing = False

		# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
		# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`.
		causal_mask = torch.full(
			(config.max_position_embeddings, config.max_position_embeddings), fill_value=True, dtype=torch.bool
		)
		self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)

		# Initialize weights and apply final processing
		self.post_init()

	def get_input_embeddings(self):
		return self.embed_tokens

	def set_input_embeddings(self, value):
		self.embed_tokens = value

	@add_start_docstrings_to_model_forward(GEMMOE_INPUTS_DOCSTRING)
	@replace_return_docstrings(output_type=MoeModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
	def forward(
		self,
		input_ids: torch.LongTensor = None,
		attention_mask: Optional[torch.Tensor] = None,
		position_ids: Optional[torch.LongTensor] = None,
		past_key_values: Optional[List[torch.FloatTensor]] = None,
		inputs_embeds: Optional[torch.FloatTensor] = None,
		use_cache: Optional[bool] = None,
		output_attentions: Optional[bool] = None,
		output_hidden_states: Optional[bool] = None,
		output_router_logits: Optional[bool] = None,
		return_dict: Optional[bool] = None,
		cache_position: Optional[torch.LongTensor] = None,
	) -> Union[Tuple, MoeModelOutputWithPast]:
		"""
		Forward pass of the sequence classification model.

		Args:
			input_ids: Input token IDs.
			attention_mask: Attention mask.
			position_ids: Position IDs.
			past_key_values: Past key-value pairs.
			inputs_embeds: Input embeddings.
			labels: Labels for sequence classification.
			use_cache: Whether to use cache.
			output_attentions: Whether to output attentions.
			output_hidden_states: Whether to output hidden states.
			return_dict: Whether to return a dictionary or tuple.

		Returns:
			Output of the sequence classification model.
		"""
		output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
		output_hidden_states = (
			output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
		)
		output_router_logits = (
			output_router_logits if output_router_logits is not None else self.config.output_router_logits
		)
		use_cache = use_cache if use_cache is not None else self.config.use_cache
		return_dict = return_dict if return_dict is not None else self.config.use_return_dict

		if (input_ids is None) ^ (inputs_embeds is not None):
			raise ValueError(
				"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
			)

		if self.gradient_checkpointing and self.training and use_cache:
			logger.warning_once(
				"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
			)
			use_cache = False

		if inputs_embeds is None:
			inputs_embeds = self.embed_tokens(input_ids)

		past_seen_tokens = 0
		if use_cache:  # kept for BC (cache positions)
			if not isinstance(past_key_values, StaticCache):
				past_key_values = DynamicCache.from_legacy_cache(past_key_values)
			past_seen_tokens = past_key_values.get_seq_length()

		if cache_position is None:
			cache_position = torch.arange(
				past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
			)

		if position_ids is None:
			position_ids = cache_position.unsqueeze(0)

		causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)

		hidden_states = inputs_embeds

		# Normalize
		scale_factor = torch.tensor(math_sqrt(self.config.hidden_size), dtype=hidden_states.dtype)
		hidden_states = hidden_states * scale_factor
		# Decoder layers
		all_hidden_states = () if output_hidden_states else None
		all_self_attns = () if output_attentions else None
		all_router_logits = () if output_router_logits else None
		next_decoder_cache = None

		for decoder_layer in self.layers:
			if output_hidden_states:
				all_hidden_states += (hidden_states,)

			if self.gradient_checkpointing and self.training:
				layer_outputs = self._gradient_checkpointing_func(
					decoder_layer.__call__,
					hidden_states,
					causal_mask,
					position_ids,
					past_key_values,
					output_attentions,
					output_router_logits,
					use_cache,
					cache_position,
				)
			else:
				layer_outputs = decoder_layer(
					hidden_states,
					attention_mask=causal_mask,
					position_ids=position_ids,
					past_key_value=past_key_values,
					output_attentions=output_attentions,
					output_router_logits=output_router_logits,
					use_cache=use_cache,
					cache_position=cache_position,
				)

			hidden_states = layer_outputs[0]
			if use_cache:
				next_decoder_cache = layer_outputs[2 if output_attentions else 1]
			if output_attentions:
				all_self_attns += (layer_outputs[1],)
			if output_router_logits:
				all_router_logits += (layer_outputs[-1],)

		hidden_states = self.norm(hidden_states)

		# Add hidden states from the last decoder layer
		if output_hidden_states:
			all_hidden_states += (hidden_states,)

		next_cache = None
		if use_cache:
			next_cache = (
				next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
			)

		if not return_dict:
			return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] if v is not None)

		return MoeModelOutputWithPast(
			last_hidden_state=hidden_states,
			past_key_values=next_cache,
			hidden_states=all_hidden_states,
			attentions=all_self_attns,
			router_logits=all_router_logits
		)

	def _update_causal_mask(self, attention_mask, input_tensor):
		"""
		Update the causal mask based on the attention mask and input tensor.

		Args:
			attention_mask (torch.Tensor): The attention mask.
			input_tensor (torch.Tensor): The input tensor.

		Returns:
			torch.Tensor: The updated causal mask.
		"""

		if self.config._attn_implementation == "flash_attention_2":
			if attention_mask is not None and 0.0 in attention_mask:
				return attention_mask
			return None

		batch_size, seq_length = input_tensor.shape[:2]
		dtype = input_tensor.dtype
		device = input_tensor.device

		# support going beyond cached `max_position_embedding`
		if seq_length > self.causal_mask.shape[-1]:
			logger.info(f"Resizing causal mask buffer from {self.causal_mask.shape[-1]} to {2 * self.causal_mask.shape[-1]}")
			causal_mask = torch.full((2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), fill_value=1)
			self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)

		# We use the current dtype to avoid any overflows
		min_dtype = torch.finfo(dtype).min
		causal_mask = self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) * min_dtype
		causal_mask = causal_mask.to(dtype=dtype, device=device)
		
		if attention_mask is not None and attention_mask.dim() == 2:
			mask_length = attention_mask.shape[-1]
			padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
			causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
		
		if self.config._attn_implementation == "sdpa" and attention_mask is not None:
			# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
			is_tracing = (
				torch.jit.is_tracing()
				or isinstance(input_tensor, torch.fx.Proxy)
				or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
			)
			
			if not is_tracing and torch.any(attention_mask != 1):
				# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
				# using left padding. This is required by
				# F.scaled_dot_product_attention memory-efficient attention path.
				# Details: https://github.com/pytorch/pytorch/issues/110213
				causal_mask = causal_mask.mul(~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)).to(dtype)

		return causal_mask

class GemmoeForCausalLM(GemmoePreTrainedModel):
    r"""
    The Gemmoe Model transformer with a language modeling head on top for causal language modeling (CLM).

    Args:
        config (GemmoeConfig): The configuration object for the Gemmoe model.

    Example usage:
    ```python
    >>> from transformers import AutoTokenizer, GemmoeForCausalLM

    >>> model = GemmoeForCausalLM.from_pretrained("google/gemmoe-7b")
    >>> tokenizer = AutoTokenizer.from_pretrained("google/gemmoe-7b")

    >>> prompt = "What is your favorite condiment?"
    >>> inputs = tokenizer(prompt, return_tensors="pt")

    >>> # Generate
    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    "What is your favorite condiment?"
    ```
    """
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = GemmoeModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = 8
        self.num_experts_per_tok = config.num_experts_per_tok

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(GEMMOE_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, GemmoeForCausalLM

        >>> model = GemmoeForCausalLM.from_pretrained("google/gemmoe-7b")
        >>> tokenizer = AutoTokenizer.from_pretrained("google/gemmoe-7b")

        >>> prompt = "What is your favorite condiment?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "What is your favorite condiment?"
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else getattr(self.config, "output_router_logits", False)
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        # Handle unused parameters
        if self.training:
            for expert in self.model.layers[-1].block_sparse_moe.experts:
                for param in expert.parameters():
                    if param.requires_grad and param.grad is None:
                        param.grad = torch.zeros_like(param)

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        aux_loss = None
        if output_router_logits:
            router_logits = outputs.router_logits if return_dict else outputs[-1]
            if router_logits is not None:
                aux_loss = load_balancing_loss_func(
                    router_logits,
                    self.num_experts,
                    self.num_experts_per_tok,
                    attention_mask,
                )
                if labels is not None:
                    loss += self.router_aux_loss_coef * aux_loss.to(loss.device)

        if not return_dict:
            output = (logits,) + outputs[1:]
            if aux_loss is not None:
                output = (aux_loss,) + output
            return (loss,) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        if self.generation_config.cache_implementation == "static":
            cache_position = kwargs.get("cache_position", None)
            if cache_position is None:
                past_length = 0
            else:
                past_length = cache_position[-1] + 1
            input_ids = input_ids[:, past_length:]
            position_ids = position_ids[:, past_length:]

        cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)

        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}

        model_inputs.update(
            {
                "position_ids": position_ids.contiguous(),
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )

        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past
@add_start_docstrings(
    """
    The Gemmoe Model transformer with a sequence classification head on top (linear layer).
    [`GemmoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    GEMMOE_START_DOCSTRING,
)

class GemmoeForSequenceClassification(GemmoePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = GemmoeModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(GEMMOE_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        """
        Forward pass of the sequence classification model.

        Args:
            input_ids (torch.LongTensor, optional): Input token IDs.
            attention_mask (torch.Tensor, optional): Attention mask.
            position_ids (torch.LongTensor, optional): Position IDs.
            past_key_values (List[torch.FloatTensor], optional): Past key-value pairs.
            inputs_embeds (torch.FloatTensor, optional): Input embeddings.
            labels (torch.LongTensor, optional): Labels for sequence classification.
            use_cache (bool, optional): Whether to use cache.
            output_attentions (bool, optional): Whether to output attentions.
            output_hidden_states (bool, optional): Whether to output hidden states.
            return_dict (bool, optional): Whether to return a dictionary or tuple.

        Returns:
            Union[Tuple, SequenceClassifierOutputWithPast]: Output of the sequence classification model.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)

        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )