|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- mlabonne/AlphaMonarch-7B |
|
- mlabonne/NeuralMonarch-7B |
|
- Kukedlc/NeuralMaxime-7B-slerp |
|
- eren23/dpo-binarized-NeuralTrix-7B |
|
base_model: |
|
- mlabonne/AlphaMonarch-7B |
|
- mlabonne/NeuralMonarch-7B |
|
- Kukedlc/NeuralMaxime-7B-slerp |
|
- eren23/dpo-binarized-NeuralTrix-7B |
|
--- |
|
|
|
# NeMoTrix-v2 |
|
|
|
NeMoTrix-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) |
|
* [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B) |
|
* [Kukedlc/NeuralMaxime-7B-slerp](https://huggingface.co/Kukedlc/NeuralMaxime-7B-slerp) |
|
* [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: CultriX/MonaTrix-v4 |
|
# No parameters necessary for base model, chosen for its strong performance and presence in high-scoring configurations |
|
- model: mlabonne/AlphaMonarch-7B |
|
parameters: |
|
density: 0.65 |
|
weight: 0.4 |
|
- model: mlabonne/NeuralMonarch-7B |
|
parameters: |
|
density: 0.65 |
|
weight: 0.35 |
|
- model: Kukedlc/NeuralMaxime-7B-slerp |
|
parameters: |
|
density: 0.6 |
|
weight: 0.35 |
|
- model: eren23/dpo-binarized-NeuralTrix-7B |
|
parameters: |
|
density: 0.55 |
|
weight: 0.25 |
|
merge_method: dare_ties |
|
base_model: CultriX/MonaTrix-v4 |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
random_seed: 0 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "CultriX/NeMoTrix-v2" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |