VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs

If you like our project, please give us a star ⭐ on Github for the latest update.

πŸ“° News

🌎 Model Zoo

Vision-Only Checkpoints

Audio-Visual Checkpoints

Model Name Type Audio Encoder Language Decoder
VideoLLaMA2.1-7B-AV (This Checkpoint) Chat Fine-tuned BEATs_iter3+(AS2M)(cpt2) VideoLLaMA2.1-7B-16F

πŸš€ Main Results

Multi-Choice Video QA & Video Captioning

Open-Ended Video QA

Multi-Choice & Open-Ended Audio QA

Open-Ended Audio-Visual QA

πŸ€– Inference with VideoLLaMA2-AV

import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
import argparse

def inference(args):

    model_path = args.model_path
    model, processor, tokenizer = model_init(model_path)

    if args.modal_type == "a":
        model.model.vision_tower = None
    elif args.modal_type == "v":
        model.model.audio_tower = None
    elif args.modal_type == "av":
        pass
    else:
        raise NotImplementedError
    # Audio-visual Inference
    audio_video_path = "assets/00003491.mp4"
    preprocess = processor['audio' if args.modal_type == "a" else "video"]
    if args.modal_type == "a":
        audio_video_tensor = preprocess(audio_video_path)
    else:
        audio_video_tensor = preprocess(audio_video_path, va=True if args.modal_type == "av" else False)
    question = f"Please describe the video with audio information."

    # Audio Inference
    audio_video_path = "assets/bird-twitter-car.wav"
    preprocess = processor['audio' if args.modal_type == "a" else "video"]
    if args.modal_type == "a":
        audio_video_tensor = preprocess(audio_video_path)
    else:
        audio_video_tensor = preprocess(audio_video_path, va=True if args.modal_type == "av" else False)
    question = f"Please describe the audio."

    # Video Inference
    audio_video_path = "assets/output_v_1jgsRbGzCls.mp4"
    preprocess = processor['audio' if args.modal_type == "a" else "video"]
    if args.modal_type == "a":
        audio_video_tensor = preprocess(audio_video_path)
    else:
        audio_video_tensor = preprocess(audio_video_path, va=True if args.modal_type == "av" else False)
    question = f"What activity are the people practicing in the video?"

    output = mm_infer(
        audio_video_tensor,
        question,
        model=model,
        tokenizer=tokenizer,
        modal='audio' if args.modal_type == "a" else "video",
        do_sample=False,
    )

    print(output)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument('--model-path', help='', , required=False, default='DAMO-NLP-SG/VideoLLaMA2.1-7B-AV')
    parser.add_argument('--modal-type', choices=["a", "v", "av"], help='', required=True)
    args = parser.parse_args()

    inference(args)

Citation

If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:

@article{damonlpsg2024videollama2,
  title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
  author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
  journal={arXiv preprint arXiv:2406.07476},
  year={2024},
  url = {https://arxiv.org/abs/2406.07476}
}

@article{damonlpsg2023videollama,
  title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
  author = {Zhang, Hang and Li, Xin and Bing, Lidong},
  journal = {arXiv preprint arXiv:2306.02858},
  year = {2023},
  url = {https://arxiv.org/abs/2306.02858}
}
Downloads last month
1,033
Safetensors
Model size
8.53B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train DAMO-NLP-SG/VideoLLaMA2.1-7B-AV

Spaces using DAMO-NLP-SG/VideoLLaMA2.1-7B-AV 2

Collection including DAMO-NLP-SG/VideoLLaMA2.1-7B-AV