license: other
library_name: transformers
tags:
- generated_from_trainer
base_model: EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- cognitivecomputations/dolphin-2.9.3
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
model-index:
- name: EVA-Qwen2.5-72B-SFFT-v0.2
results: []
Quantized model => https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2
Quantization Details: Quantization is done using turboderp's ExLlamaV2 v0.2.4.
I use the default calibration datasets and arguments. The repo also includes a "measurement.json" file, which was used during the quantization process.
For models with bits per weight (BPW) over 6.0, I default to quantizing the lm_head
layer at 8 bits instead of the standard 6 bits.
Who are you? What's with these weird BPWs on [insert model here]? I specialize in optimized EXL2 quantization for models in the 70B to 100B+ range, specifically tailored for 48GB VRAM setups. My rig is built using 2 x 3090s with a Ryzen APU (APU used solely for desktop output—no VRAM wasted on the 3090s). I use TabbyAPI for inference, targeting context sizes between 32K and 64K.
Every model I upload includes a config.yml
file with my ideal TabbyAPI settings. If you're using my config, don’t forget to set PYTORCH_CUDA_ALLOC_CONF=backend:cudaMallocAsync
to save some VRAM.