Edit model card

Brain tumor classification using CNN

Model Details

Model Description

model.summary()
Out:
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling (Rescaling)       (None, 200, 200, 1)       0         
                                                                 
 conv2d (Conv2D)             (None, 200, 200, 16)      160       
                                                                 
 max_pooling2d (MaxPooling2D  (None, 100, 100, 16)     0         
 )                                                               
                                                                 
 conv2d_1 (Conv2D)           (None, 100, 100, 32)      4640      
                                                                 
 max_pooling2d_1 (MaxPooling  (None, 50, 50, 32)       0         
 2D)                                                             
                                                                 
 conv2d_2 (Conv2D)           (None, 50, 50, 64)        18496     
                                                                 
 max_pooling2d_2 (MaxPooling  (None, 25, 25, 64)       0         
 2D)                                                             
                                                                 
 flatten (Flatten)           (None, 40000)             0         
                                                                 
 dense (Dense)               (None, 128)               5120128   
                                                                 
 dense_1 (Dense)             (None, 64)                8256      
                                                                 
 dense_2 (Dense)             (None, 128)               8320      
                                                                 
 dense_3 (Dense)             (None, 64)                8256      
                                                                 
 dense_4 (Dense)             (None, 32)                2080      
                                                                 
 dense_5 (Dense)             (None, 96)                3168      
                                                                 
 dense_6 (Dense)             (None, 96)                9312      
                                                                 
 dense_7 (Dense)             (None, 128)               12416     
                                                                 
 dense_8 (Dense)             (None, 1)                 129       
                                                                 
=================================================================
Total params: 5,195,361
Trainable params: 5,195,361
Non-trainable params: 0
_________________________________________________________________

Dataset

The dataset is composed of Brain Tumor Classification (MRI) and Brain MRI Images for Brain Tumor Detection

Using image data augmentation we get 199.632 files belonging to 2 classes.

train-test-split: 80/20

Training (159705 files):

  • Using 143735 files for training
  • Using 15970 files for validation

Test/Validation:

  • 39927 files

Training

Coming Soon

Validation

Coming Soon

Hardware

Lenovo Thinkpad P14s

  • CPU (# Cores/Threads): AMD Ryzen 7 PRO 5850U (8/16)
  • RAM: 32 GB

Software

DataSpell 2023.1.2

  • Python 3.10.9
  • Tensorflow 2.12.0
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.