zhonghhh's picture
Update README.md
2050d34 verified
metadata
tags:
  - mteb
model-index:
  - name: Dmeta-embedding-zh-small
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 55.38441014851534
          - type: cos_sim_spearman
            value: 59.54284362578262
          - type: euclidean_pearson
            value: 58.18592108890414
          - type: euclidean_spearman
            value: 59.54284362133902
          - type: manhattan_pearson
            value: 58.142197046175916
          - type: manhattan_spearman
            value: 59.47943468645265
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 55.96911621560259
          - type: cos_sim_spearman
            value: 58.6334496101353
          - type: euclidean_pearson
            value: 62.78426382809823
          - type: euclidean_spearman
            value: 58.63344961011331
          - type: manhattan_pearson
            value: 62.80625401678188
          - type: manhattan_spearman
            value: 58.618722128260394
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 44.88
          - type: f1
            value: 42.739249460584375
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 68.56815521242152
          - type: cos_sim_spearman
            value: 70.30776353631751
          - type: euclidean_pearson
            value: 69.10087719019191
          - type: euclidean_spearman
            value: 70.30775660748148
          - type: manhattan_pearson
            value: 69.0672710967445
          - type: manhattan_spearman
            value: 70.31940638148254
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 40.7861976704356
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 38.43028280281822
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 86.78386695617407
          - type: mrr
            value: 88.79857142857142
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 87.38582377194436
          - type: mrr
            value: 89.17158730158731
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.746000000000002
          - type: map_at_10
            value: 35.952
          - type: map_at_100
            value: 37.946999999999996
          - type: map_at_1000
            value: 38.059
          - type: map_at_3
            value: 31.680999999999997
          - type: map_at_5
            value: 34.046
          - type: mrr_at_1
            value: 36.409000000000006
          - type: mrr_at_10
            value: 44.801
          - type: mrr_at_100
            value: 45.842
          - type: mrr_at_1000
            value: 45.885999999999996
          - type: mrr_at_3
            value: 42.081
          - type: mrr_at_5
            value: 43.613
          - type: ndcg_at_1
            value: 36.409000000000006
          - type: ndcg_at_10
            value: 42.687000000000005
          - type: ndcg_at_100
            value: 50.352
          - type: ndcg_at_1000
            value: 52.275000000000006
          - type: ndcg_at_3
            value: 37.113
          - type: ndcg_at_5
            value: 39.434000000000005
          - type: precision_at_1
            value: 36.409000000000006
          - type: precision_at_10
            value: 9.712
          - type: precision_at_100
            value: 1.584
          - type: precision_at_1000
            value: 0.182
          - type: precision_at_3
            value: 21.096999999999998
          - type: precision_at_5
            value: 15.498999999999999
          - type: recall_at_1
            value: 23.746000000000002
          - type: recall_at_10
            value: 53.596
          - type: recall_at_100
            value: 85.232
          - type: recall_at_1000
            value: 98.092
          - type: recall_at_3
            value: 37.226
          - type: recall_at_5
            value: 44.187
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 82.66987372218881
          - type: cos_sim_ap
            value: 90.28715189799232
          - type: cos_sim_f1
            value: 84.108318049412
          - type: cos_sim_precision
            value: 78.0849358974359
          - type: cos_sim_recall
            value: 91.13864858545709
          - type: dot_accuracy
            value: 82.66987372218881
          - type: dot_ap
            value: 90.29346021403634
          - type: dot_f1
            value: 84.108318049412
          - type: dot_precision
            value: 78.0849358974359
          - type: dot_recall
            value: 91.13864858545709
          - type: euclidean_accuracy
            value: 82.66987372218881
          - type: euclidean_ap
            value: 90.28656734732074
          - type: euclidean_f1
            value: 84.108318049412
          - type: euclidean_precision
            value: 78.0849358974359
          - type: euclidean_recall
            value: 91.13864858545709
          - type: manhattan_accuracy
            value: 82.70595309681299
          - type: manhattan_ap
            value: 90.25413574022456
          - type: manhattan_f1
            value: 83.9924670433145
          - type: manhattan_precision
            value: 79.81052631578947
          - type: manhattan_recall
            value: 88.63689501987373
          - type: max_accuracy
            value: 82.70595309681299
          - type: max_ap
            value: 90.29346021403634
          - type: max_f1
            value: 84.108318049412
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 61.38
          - type: map_at_10
            value: 71.23
          - type: map_at_100
            value: 71.61800000000001
          - type: map_at_1000
            value: 71.63000000000001
          - type: map_at_3
            value: 69.31
          - type: map_at_5
            value: 70.403
          - type: mrr_at_1
            value: 61.538000000000004
          - type: mrr_at_10
            value: 71.28999999999999
          - type: mrr_at_100
            value: 71.666
          - type: mrr_at_1000
            value: 71.678
          - type: mrr_at_3
            value: 69.44200000000001
          - type: mrr_at_5
            value: 70.506
          - type: ndcg_at_1
            value: 61.538000000000004
          - type: ndcg_at_10
            value: 75.626
          - type: ndcg_at_100
            value: 77.449
          - type: ndcg_at_1000
            value: 77.73400000000001
          - type: ndcg_at_3
            value: 71.75200000000001
          - type: ndcg_at_5
            value: 73.695
          - type: precision_at_1
            value: 61.538000000000004
          - type: precision_at_10
            value: 9.009
          - type: precision_at_100
            value: 0.9860000000000001
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 26.379
          - type: precision_at_5
            value: 16.797
          - type: recall_at_1
            value: 61.38
          - type: recall_at_10
            value: 89.199
          - type: recall_at_100
            value: 97.576
          - type: recall_at_1000
            value: 99.789
          - type: recall_at_3
            value: 78.635
          - type: recall_at_5
            value: 83.325
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.067
          - type: map_at_10
            value: 70.658
          - type: map_at_100
            value: 73.85300000000001
          - type: map_at_1000
            value: 73.925
          - type: map_at_3
            value: 48.391
          - type: map_at_5
            value: 61.172000000000004
          - type: mrr_at_1
            value: 83.1
          - type: mrr_at_10
            value: 88.214
          - type: mrr_at_100
            value: 88.298
          - type: mrr_at_1000
            value: 88.304
          - type: mrr_at_3
            value: 87.717
          - type: mrr_at_5
            value: 88.03699999999999
          - type: ndcg_at_1
            value: 83.1
          - type: ndcg_at_10
            value: 79.89
          - type: ndcg_at_100
            value: 83.829
          - type: ndcg_at_1000
            value: 84.577
          - type: ndcg_at_3
            value: 78.337
          - type: ndcg_at_5
            value: 77.224
          - type: precision_at_1
            value: 83.1
          - type: precision_at_10
            value: 38.934999999999995
          - type: precision_at_100
            value: 4.6690000000000005
          - type: precision_at_1000
            value: 0.484
          - type: precision_at_3
            value: 70.48299999999999
          - type: precision_at_5
            value: 59.68
          - type: recall_at_1
            value: 23.067
          - type: recall_at_10
            value: 81.702
          - type: recall_at_100
            value: 94.214
          - type: recall_at_1000
            value: 98.241
          - type: recall_at_3
            value: 51.538
          - type: recall_at_5
            value: 67.39
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 49.8
          - type: map_at_10
            value: 59.46399999999999
          - type: map_at_100
            value: 60.063
          - type: map_at_1000
            value: 60.08
          - type: map_at_3
            value: 56.833
          - type: map_at_5
            value: 58.438
          - type: mrr_at_1
            value: 49.8
          - type: mrr_at_10
            value: 59.46399999999999
          - type: mrr_at_100
            value: 60.063
          - type: mrr_at_1000
            value: 60.08
          - type: mrr_at_3
            value: 56.833
          - type: mrr_at_5
            value: 58.438
          - type: ndcg_at_1
            value: 49.8
          - type: ndcg_at_10
            value: 64.48
          - type: ndcg_at_100
            value: 67.314
          - type: ndcg_at_1000
            value: 67.745
          - type: ndcg_at_3
            value: 59.06400000000001
          - type: ndcg_at_5
            value: 61.973
          - type: precision_at_1
            value: 49.8
          - type: precision_at_10
            value: 8.04
          - type: precision_at_100
            value: 0.935
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 21.833
          - type: precision_at_5
            value: 14.52
          - type: recall_at_1
            value: 49.8
          - type: recall_at_10
            value: 80.4
          - type: recall_at_100
            value: 93.5
          - type: recall_at_1000
            value: 96.8
          - type: recall_at_3
            value: 65.5
          - type: recall_at_5
            value: 72.6
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 49.111196614082345
          - type: f1
            value: 37.07930546974089
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 85.57223264540339
          - type: ap
            value: 53.30690968994808
          - type: f1
            value: 80.20587062271773
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 73.03085269274996
          - type: cos_sim_spearman
            value: 78.72837937949888
          - type: euclidean_pearson
            value: 78.34911745798928
          - type: euclidean_spearman
            value: 78.72838602779268
          - type: manhattan_pearson
            value: 78.31833697617105
          - type: manhattan_spearman
            value: 78.69603741566397
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 27.391692468538416
          - type: mrr
            value: 26.44682539682539
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 57.206999999999994
          - type: map_at_10
            value: 66.622
          - type: map_at_100
            value: 67.12700000000001
          - type: map_at_1000
            value: 67.145
          - type: map_at_3
            value: 64.587
          - type: map_at_5
            value: 65.827
          - type: mrr_at_1
            value: 59.312
          - type: mrr_at_10
            value: 67.387
          - type: mrr_at_100
            value: 67.836
          - type: mrr_at_1000
            value: 67.851
          - type: mrr_at_3
            value: 65.556
          - type: mrr_at_5
            value: 66.66
          - type: ndcg_at_1
            value: 59.312
          - type: ndcg_at_10
            value: 70.748
          - type: ndcg_at_100
            value: 73.076
          - type: ndcg_at_1000
            value: 73.559
          - type: ndcg_at_3
            value: 66.81200000000001
          - type: ndcg_at_5
            value: 68.92399999999999
          - type: precision_at_1
            value: 59.312
          - type: precision_at_10
            value: 8.798
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 25.487
          - type: precision_at_5
            value: 16.401
          - type: recall_at_1
            value: 57.206999999999994
          - type: recall_at_10
            value: 82.767
          - type: recall_at_100
            value: 93.449
          - type: recall_at_1000
            value: 97.262
          - type: recall_at_3
            value: 72.271
          - type: recall_at_5
            value: 77.291
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.78345662407531
          - type: f1
            value: 68.35683436974351
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.16408876933423
          - type: f1
            value: 73.31484873459382
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 51.4
          - type: map_at_10
            value: 57.091
          - type: map_at_100
            value: 57.652
          - type: map_at_1000
            value: 57.703
          - type: map_at_3
            value: 55.733
          - type: map_at_5
            value: 56.363
          - type: mrr_at_1
            value: 51.7
          - type: mrr_at_10
            value: 57.243
          - type: mrr_at_100
            value: 57.80499999999999
          - type: mrr_at_1000
            value: 57.855999999999995
          - type: mrr_at_3
            value: 55.883
          - type: mrr_at_5
            value: 56.513000000000005
          - type: ndcg_at_1
            value: 51.4
          - type: ndcg_at_10
            value: 59.948
          - type: ndcg_at_100
            value: 63.064
          - type: ndcg_at_1000
            value: 64.523
          - type: ndcg_at_3
            value: 57.089999999999996
          - type: ndcg_at_5
            value: 58.214
          - type: precision_at_1
            value: 51.4
          - type: precision_at_10
            value: 6.9
          - type: precision_at_100
            value: 0.845
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 20.333000000000002
          - type: precision_at_5
            value: 12.740000000000002
          - type: recall_at_1
            value: 51.4
          - type: recall_at_10
            value: 69
          - type: recall_at_100
            value: 84.5
          - type: recall_at_1000
            value: 96.2
          - type: recall_at_3
            value: 61
          - type: recall_at_5
            value: 63.7
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 74.38999999999999
          - type: f1
            value: 74.07161306140839
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 81.15863562533838
          - type: cos_sim_ap
            value: 84.84571607908443
          - type: cos_sim_f1
            value: 82.55872063968016
          - type: cos_sim_precision
            value: 78.36812144212524
          - type: cos_sim_recall
            value: 87.22280887011615
          - type: dot_accuracy
            value: 81.15863562533838
          - type: dot_ap
            value: 84.84571607908443
          - type: dot_f1
            value: 82.55872063968016
          - type: dot_precision
            value: 78.36812144212524
          - type: dot_recall
            value: 87.22280887011615
          - type: euclidean_accuracy
            value: 81.15863562533838
          - type: euclidean_ap
            value: 84.84571607908443
          - type: euclidean_f1
            value: 82.55872063968016
          - type: euclidean_precision
            value: 78.36812144212524
          - type: euclidean_recall
            value: 87.22280887011615
          - type: manhattan_accuracy
            value: 80.7796426637791
          - type: manhattan_ap
            value: 84.81524098914134
          - type: manhattan_f1
            value: 82.36462990561351
          - type: manhattan_precision
            value: 77.76735459662288
          - type: manhattan_recall
            value: 87.53959873284055
          - type: max_accuracy
            value: 81.15863562533838
          - type: max_ap
            value: 84.84571607908443
          - type: max_f1
            value: 82.55872063968016
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 93.12000000000002
          - type: ap
            value: 91.0749103088623
          - type: f1
            value: 93.10837266607813
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 38.5692290188029
          - type: cos_sim_spearman
            value: 42.965264868554335
          - type: euclidean_pearson
            value: 43.002526263615735
          - type: euclidean_spearman
            value: 42.97561576045246
          - type: manhattan_pearson
            value: 43.050089639788936
          - type: manhattan_spearman
            value: 43.038497558804934
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 38.99284895602663
          - type: cos_sim_spearman
            value: 41.02655813481606
          - type: euclidean_pearson
            value: 38.934953519378354
          - type: euclidean_spearman
            value: 41.02680077136343
          - type: manhattan_pearson
            value: 39.224809609807785
          - type: manhattan_spearman
            value: 41.13950779185706
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.47464607633356
          - type: cos_sim_spearman
            value: 66.76311382148693
          - type: euclidean_pearson
            value: 67.25180409604143
          - type: euclidean_spearman
            value: 66.76311382148693
          - type: manhattan_pearson
            value: 67.6928257682864
          - type: manhattan_spearman
            value: 67.08172581019826
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 77.48943840585562
          - type: cos_sim_spearman
            value: 79.0869194735025
          - type: euclidean_pearson
            value: 79.48559575794792
          - type: euclidean_spearman
            value: 79.08765044225807
          - type: manhattan_pearson
            value: 79.36157224751007
          - type: manhattan_spearman
            value: 78.94400905463999
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 66.1093201711458
          - type: mrr
            value: 75.70959742506797
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 25.533
          - type: map_at_10
            value: 71.322
          - type: map_at_100
            value: 75.244
          - type: map_at_1000
            value: 75.333
          - type: map_at_3
            value: 50.15500000000001
          - type: map_at_5
            value: 61.514
          - type: mrr_at_1
            value: 86.126
          - type: mrr_at_10
            value: 89.462
          - type: mrr_at_100
            value: 89.58500000000001
          - type: mrr_at_1000
            value: 89.59
          - type: mrr_at_3
            value: 88.88000000000001
          - type: mrr_at_5
            value: 89.241
          - type: ndcg_at_1
            value: 86.126
          - type: ndcg_at_10
            value: 79.89500000000001
          - type: ndcg_at_100
            value: 84.405
          - type: ndcg_at_1000
            value: 85.286
          - type: ndcg_at_3
            value: 81.547
          - type: ndcg_at_5
            value: 79.834
          - type: precision_at_1
            value: 86.126
          - type: precision_at_10
            value: 39.972
          - type: precision_at_100
            value: 4.932
          - type: precision_at_1000
            value: 0.514
          - type: precision_at_3
            value: 71.49
          - type: precision_at_5
            value: 59.687
          - type: recall_at_1
            value: 25.533
          - type: recall_at_10
            value: 78.962
          - type: recall_at_100
            value: 93.413
          - type: recall_at_1000
            value: 97.89099999999999
          - type: recall_at_3
            value: 52.129000000000005
          - type: recall_at_5
            value: 65.444
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.800000000000004
          - type: f1
            value: 50.07807183704828
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 65.15253218390774
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 58.81779372506517
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 53
          - type: map_at_10
            value: 63.422999999999995
          - type: map_at_100
            value: 63.995000000000005
          - type: map_at_1000
            value: 64.004
          - type: map_at_3
            value: 61.382999999999996
          - type: map_at_5
            value: 62.488
          - type: mrr_at_1
            value: 53
          - type: mrr_at_10
            value: 63.422999999999995
          - type: mrr_at_100
            value: 63.995000000000005
          - type: mrr_at_1000
            value: 64.004
          - type: mrr_at_3
            value: 61.382999999999996
          - type: mrr_at_5
            value: 62.488
          - type: ndcg_at_1
            value: 53
          - type: ndcg_at_10
            value: 68.301
          - type: ndcg_at_100
            value: 70.988
          - type: ndcg_at_1000
            value: 71.294
          - type: ndcg_at_3
            value: 64.11
          - type: ndcg_at_5
            value: 66.094
          - type: precision_at_1
            value: 53
          - type: precision_at_10
            value: 8.35
          - type: precision_at_100
            value: 0.958
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24
          - type: precision_at_5
            value: 15.36
          - type: recall_at_1
            value: 53
          - type: recall_at_10
            value: 83.5
          - type: recall_at_100
            value: 95.8
          - type: recall_at_1000
            value: 98.3
          - type: recall_at_3
            value: 72
          - type: recall_at_5
            value: 76.8
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 86.18
          - type: ap
            value: 69.04229346593745
          - type: f1
            value: 84.52986739717021
license: apache-2.0
icon

Dmeta-embedding-small

  • Dmeta-embedding系列模型是跨领域、跨任务、开箱即用的中文 Embedding 模型,适用于搜索、问答、智能客服、LLM+RAG 等各种业务场景,支持使用 Transformers/Sentence-Transformers/Langchain 等工具加载推理。
  • Dmeta-embedding-zh-small是开源模型Dmeta-embedding-zh的蒸馏版本(8层BERT),模型大小不到300M。相较于原始版本,Dmeta-embedding-zh-small模型大小减小三分之一,推理速度提升约30%,总体精度下降约1.4%。

Evaluation

这里主要跟蒸馏前对应的 teacher 模型作了对比:

性能:(基于1万条数据测试,GPU设备是V100)

Teacher Student Gap
Model Dmeta-Embedding-zh (411M) Dmeta-Embedding-zh-small (297M) 0.67x
Cost 127s 89s -30%
Latency 13ms 9ms -31%
Throughput 78 sentence/s 111 sentence/s 1.4x

精度:(参考自MTEB榜单)

Classification Clustering Pair Classification Reranking Retrieval STS Avg
Dmeta-Embedding-zh 70 50.96 88.92 67.17 70.41 64.89 67.51
Dmeta-Embedding-zh-small 69.89 50.8 87.57 66.92 67.7 62.13 66.1
Gap -0.11 -0.16 -1.35 -0.25 -2.71 -2.76 -1.41

Usage

目前模型支持通过 Sentence-Transformers, Langchain, Huggingface Transformers 等主流框架进行推理,具体用法参考各个框架的示例。

Sentence-Transformers

Dmeta-embedding 模型支持通过 sentence-transformers 来加载推理:

pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
model = SentenceTransformer('DMetaSoul/Dmeta-embedding-zh-small')
embs1 = model.encode(texts1, normalize_embeddings=True)
embs2 = model.encode(texts2, normalize_embeddings=True)
# 计算两两相似度
similarity = embs1 @ embs2.T
print(similarity)
# 获取 texts1[i] 对应的最相似 texts2[j]
for i in range(len(texts1)):
    scores = []
    for j in range(len(texts2)):
        scores.append([texts2[j], similarity[i][j]])
    scores = sorted(scores, key=lambda x:x[1], reverse=True)
    print(f"查询文本:{texts1[i]}")
    for text2, score in scores:
        print(f"相似文本:{text2},打分:{score}")
    print()

示例输出如下:

查询文本:胡子长得太快怎么办?
相似文本:胡子长得快怎么办?,打分:0.965681254863739
相似文本:怎样使胡子不浓密!,打分:0.7353651523590088
相似文本:香港买手表哪里好,打分:0.24928246438503265
相似文本:在杭州手机到哪里买,打分:0.2038613110780716

查询文本:在香港哪里买手表好
相似文本:香港买手表哪里好,打分:0.9916468262672424
相似文本:在杭州手机到哪里买,打分:0.498248815536499
相似文本:胡子长得快怎么办?,打分:0.2424771636724472
相似文本:怎样使胡子不浓密!,打分:0.21715955436229706

Langchain

Dmeta-embedding 模型支持通过 LLM 工具框架 langchain 来加载推理:

pip install -U langchain
import torch
import numpy as np
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "DMetaSoul/Dmeta-embedding-zh-small"
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs,
)
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
embs1 = model.embed_documents(texts1)
embs2 = model.embed_documents(texts2)
embs1, embs2 = np.array(embs1), np.array(embs2)
# 计算两两相似度
similarity = embs1 @ embs2.T
print(similarity)
# 获取 texts1[i] 对应的最相似 texts2[j]
for i in range(len(texts1)):
    scores = []
    for j in range(len(texts2)):
        scores.append([texts2[j], similarity[i][j]])
    scores = sorted(scores, key=lambda x:x[1], reverse=True)
    print(f"查询文本:{texts1[i]}")
    for text2, score in scores:
        print(f"相似文本:{text2},打分:{score}")
    print()

HuggingFace Transformers

Dmeta-embedding 模型支持通过 HuggingFace Transformers 框架来加载推理:

pip install -U transformers
import torch
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def cls_pooling(model_output):
    return model_output[0][:, 0]
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/Dmeta-embedding-zh-small')
model = AutoModel.from_pretrained('DMetaSoul/Dmeta-embedding-zh-small')
model.eval()
with torch.no_grad():
    inputs1 = tokenizer(texts1, padding=True, truncation=True, return_tensors='pt')
    inputs2 = tokenizer(texts2, padding=True, truncation=True, return_tensors='pt')
    model_output1 = model(**inputs1)
    model_output2 = model(**inputs2)
    embs1, embs2 = cls_pooling(model_output1), cls_pooling(model_output2)
    embs1 = torch.nn.functional.normalize(embs1, p=2, dim=1).numpy()
    embs2 = torch.nn.functional.normalize(embs2, p=2, dim=1).numpy()
# 计算两两相似度
similarity = embs1 @ embs2.T
print(similarity)
# 获取 texts1[i] 对应的最相似 texts2[j]
for i in range(len(texts1)):
    scores = []
    for j in range(len(texts2)):
        scores.append([texts2[j], similarity[i][j]])
    scores = sorted(scores, key=lambda x:x[1], reverse=True)
    print(f"查询文本:{texts1[i]}")
    for text2, score in scores:
        print(f"相似文本:{text2},打分:{score}")
    print()

Contact

您如果在使用过程中,遇到任何问题,欢迎前往讨论区建言献策。 您也可以联系我们:赵中昊 [email protected], 肖文斌 [email protected], 孙凯 [email protected] 同时我们也开通了微信群,可扫码加入我们(人数超200了,先加管理员再拉进群),一起共建 AIGC 技术生态!

License

Dmeta-embedding 系列模型采用 Apache-2.0 License,开源模型可以进行免费商用私有部署。