xiaowenbin
Update README.md
4fa8738
|
raw
history blame
3.47 kB
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- semantic-search
- chinese
---
# DMetaSoul/sbert-chinese-dtm-domain-v1
此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在 OPPO 手机助手小布对话匹配数据集([BUSTM](https://github.com/xiaobu-coai/BUSTM))上进行训练调优,适用于**开放领域的对话匹配**场景(偏口语化),比如:
- 哪有好玩的 VS. 这附近有什么好玩的地方
- 定时25分钟 VS. 计时半个小时
- 我要听王琦的歌 VS. 放一首王琦的歌
注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-dtm-domain-v1-distill),也已经开源啦!
# Usage
## 1. Sentence-Transformers
通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装:
```
pip install -U sentence-transformers
```
然后使用下面的代码来载入该模型并进行文本表征向量的提取:
```python
from sentence_transformers import SentenceTransformer
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-dtm-domain-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
## 2. HuggingFace Transformers
如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation
该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数:
| | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** |
| ------------------------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- |
| **sbert-chinese-dtm-domain-v1** | 78.36% | 74.46% | 32.18% | 75.95% | 44.01% | 14.50% | 66.85% |
## Citing & Authors
E-mail: [email protected]