TransGPT-v0 / README.md
iKING-ROC's picture
Update README.md
3f60eda
metadata
title: TransGPT-7b
emoji: 📚
colorFrom: gray
colorTo: red
language:
  - zh
tags:
  - chatglm
  - pytorch
  - zh
  - Text2Text-Generation
license: other
widget:
  - text: 我想了解如何申请和更新驾驶证?

TransGPT

发布中文TransGPT(7B)模型

test case:

input_text predict
我想了解如何申请和更新驾驶证? 你可以到当地的交通管理部门或者公安局办理相关手续。具体流程可以在官方网站上查询。

文件校验

md5sum ./*
e618653f90f163928316858e95bd54d1  ./config.json
b1eb3650cbc84466fed263a9f0dff5e2  ./generation_config.json
570159d90b39554713e9702b9107928a  ./pytorch_model-00001-of-00002.bin
8788671a726d25b192134909fb825e0b  ./pytorch_model-00002-of-00002.bin
604e0ba32b2cb7df8d8a3d13bddc93fe  ./pytorch_model.bin.index.json
413c7f9a8a6517c52c937eed27f18847  ./special_tokens_map.json
2ba2be903e87d7471bbc413e041e70e8  ./tokenizer_config.json
39afcc4541e7931ef0d561ac6e216586  ./tokenizer.model

Usage

First, you pass your input through the transformer model, then you get the generated sentence.

Install package:

pip install sentencepiece
pip install transformers>=4.28.0
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM

def generate_prompt(text):
    return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{text}

### Response:"""

checkpoint="DUOMO-Lab/TransGPT-v0"
tokenizer = LlamaTokenizer.from_pretrained(checkpoint)
model = LlamaForCausalLM.from_pretrained(checkpoint).half().cuda()
model.eval()

text = '我想了解如何申请和更新驾驶证?'
prompt = generate_prompt(text)
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')


with torch.no_grad():
    output_ids = model.generate(
        input_ids=input_ids,
        max_new_tokens=1024,
        temperature=1,
        top_k=20,
        top_p=0.9,
        repetition_penalty=1.15
    ).cuda()


output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output.replace(text, '').strip())

output:

我想了解如何申请和更新驾驶证?

模型来源

release合并后的模型权重。

HuggingFace版本权重(.bin文件)可用于:

  • 使用Transformers进行训练和推理
  • 使用text-generation-webui搭建界面

PyTorch版本权重(.pth文件)可用于:

  • 使用llama.cpp工具进行量化和部署

模型文件组成:

TransGPT
    config.json
    generation_config.json
    pytorch_model-00001-of-00002.bin
    pytorch_model-00002-of-00002.bin
    pytorch_model.bin.index.json
    special_tokens_map.json
    tokenizer.json
    tokenizer.model
    tokenizer_config.json

硬件要求:14G显存

微调数据集

  1. ~34.6万条文本数据集(用于领域内预训练):DUOMO-Lab/TransGPT-pt
  2. ~5.6万条对话数据(用于微调):finetune_data

如果需要训练LLaMA模型,请参考https://github.com/DUOMO/TransGPT

Citation

@software{TransGPT,
  author = {Wang Peng},
  title = {DUOMO/TransGPT},
  year = {2023},
  url = {https://github.com/DUOMO/TransGPT},
}

Reference