File size: 2,210 Bytes
fd256a4 13056e5 fd256a4 13056e5 fd256a4 13056e5 fd256a4 13056e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
license: apache-2.0
language:
- en
---
![imae](./image.webp)
# Finetuned Vision Model: unsloth/llama-3.2-11b-vision-instruct
## Overview
This model is a finetuned version of `unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit`, optimized for vision-based instruction tasks.
It was trained 2x faster using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library, enabling efficient large model adaptation while maintaining precision and accuracy.
![Unsloth Logo](https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png)
## Key Features
- **Model Type**: Multimodal LLama-based Vision Instruction Model
- **License**: Apache-2.0
- **Base Model**: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
- **Developed by**: Daemontatox
- **Language**: English
## Training Details
- **Framework**: Hugging Face Transformers + TRL
- **Optimization**: Unsloth methodology for accelerated finetuning
- **Quantization**: 4-bit model, enabling deployment on resource-constrained devices
- **Dataset**: Vision-specific instruction tasks (details to be added by user if public)
## Performance Metrics
- **Inference Speed**: Optimized for low-latency environments
- **Accuracy**: Improved on vision-related benchmarks (details TBD based on evaluation)
- **Model Size**: Lightweight due to quantization
## Applications
- Vision-based interactive AI
- Instruction-following tasks with multimodal input
- Resource-constrained deployment (e.g., edge devices)
## How to Use
To load and use the model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "your_model_repository_name"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
# Example usage
input_text = "Describe the image in detail:"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
|