v4_qwen_lora

This model is a fine-tuned version of Daewon0808/prm800k_qwen_fulltune on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1986
  • Prm accuracy: 0.9216
  • Prm precision: 0.9710
  • Prm recall: 0.9178
  • Prm specificty: 0.9310
  • Prm npv: 0.8182
  • Prm f1: 0.9437
  • Prm f1 neg: 0.8710
  • Prm f1 auc: 0.9244
  • Prm f1 auc (fixed): 0.9502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 908932403
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Prm accuracy Prm precision Prm recall Prm specificty Prm npv Prm f1 Prm f1 neg Prm f1 auc Prm f1 auc (fixed)
No log 0 0 0.4028 0.8039 0.9344 0.7808 0.8621 0.6098 0.8507 0.7143 0.8214 0.8420
0.4957 0.0113 5 0.4020 0.8039 0.9344 0.7808 0.8621 0.6098 0.8507 0.7143 0.8214 0.8427
0.4552 0.0225 10 0.4001 0.8039 0.9344 0.7808 0.8621 0.6098 0.8507 0.7143 0.8214 0.8451
0.4974 0.0338 15 0.3895 0.8431 0.9385 0.8356 0.8621 0.6757 0.8841 0.7576 0.8488 0.8467
0.4715 0.0451 20 0.3655 0.8824 0.9420 0.8904 0.8621 0.7576 0.9155 0.8065 0.8762 0.8517
0.4215 0.0563 25 0.3386 0.9020 0.9437 0.9178 0.8621 0.8065 0.9306 0.8333 0.8899 0.8573
0.4069 0.0676 30 0.3204 0.9216 0.9333 0.9589 0.8276 0.8889 0.9459 0.8571 0.8932 0.8630
0.349 0.0789 35 0.3014 0.9118 0.9211 0.9589 0.7931 0.8846 0.9396 0.8364 0.8760 0.8803
0.3483 0.0901 40 0.2888 0.9118 0.9571 0.9178 0.8966 0.8125 0.9371 0.8525 0.9072 0.8864
0.3461 0.1014 45 0.2819 0.8627 0.9538 0.8493 0.8966 0.7027 0.8986 0.7879 0.8729 0.8824
0.3105 0.1126 50 0.2557 0.8627 0.9538 0.8493 0.8966 0.7027 0.8986 0.7879 0.8729 0.8845
0.2924 0.1239 55 0.2360 0.8824 0.9841 0.8493 0.9655 0.7179 0.9118 0.8235 0.9074 0.8977
0.3195 0.1352 60 0.2403 0.8824 0.9841 0.8493 0.9655 0.7179 0.9118 0.8235 0.9074 0.9145
0.3174 0.1464 65 0.2155 0.9216 0.9851 0.9041 0.9655 0.8 0.9429 0.875 0.9348 0.8970
0.3069 0.1577 70 0.2296 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.8902
0.2821 0.1690 75 0.2621 0.8725 0.9839 0.8356 0.9655 0.7 0.9037 0.8116 0.9006 0.8890
0.2904 0.1802 80 0.2365 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.8940
0.226 0.1915 85 0.2097 0.9216 0.9851 0.9041 0.9655 0.8 0.9429 0.875 0.9348 0.9027
0.2534 0.2028 90 0.2241 0.8824 0.9841 0.8493 0.9655 0.7179 0.9118 0.8235 0.9074 0.9192
0.2278 0.2140 95 0.2197 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.8977
0.198 0.2253 100 0.2201 0.8824 0.9420 0.8904 0.8621 0.7576 0.9155 0.8065 0.8762 0.8904
0.2287 0.2366 105 0.2341 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9140
0.2597 0.2478 110 0.2366 0.8824 0.9841 0.8493 0.9655 0.7179 0.9118 0.8235 0.9074 0.9280
0.2479 0.2591 115 0.2153 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9315
0.232 0.2703 120 0.2051 0.9020 0.9565 0.9041 0.8966 0.7879 0.9296 0.8387 0.9003 0.9339
0.2441 0.2816 125 0.2070 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9407
0.2062 0.2929 130 0.2096 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9433
0.2558 0.3041 135 0.1993 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9466
0.2381 0.3154 140 0.1867 0.9118 0.9571 0.9178 0.8966 0.8125 0.9371 0.8525 0.9072 0.9447
0.2106 0.3267 145 0.2004 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9419
0.2474 0.3379 150 0.2106 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9428
0.2377 0.3492 155 0.2037 0.8922 0.9429 0.9041 0.8621 0.7812 0.9231 0.8197 0.8831 0.9374
0.2411 0.3605 160 0.2217 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9485
0.2158 0.3717 165 0.2097 0.9020 0.9565 0.9041 0.8966 0.7879 0.9296 0.8387 0.9003 0.9400
0.2489 0.3830 170 0.2116 0.9020 0.9701 0.8904 0.9310 0.7714 0.9286 0.8438 0.9107 0.9421
0.2406 0.3943 175 0.2371 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9445
0.2038 0.4055 180 0.2064 0.9216 0.9851 0.9041 0.9655 0.8 0.9429 0.875 0.9348 0.9490
0.2539 0.4168 185 0.1864 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9405
0.2583 0.4280 190 0.2180 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9410
0.24 0.4393 195 0.2054 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9339
0.1977 0.4506 200 0.2223 0.8824 0.9692 0.8630 0.9310 0.7297 0.9130 0.8182 0.8970 0.9343
0.1992 0.4618 205 0.2221 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9395
0.2732 0.4731 210 0.1947 0.9216 0.9851 0.9041 0.9655 0.8 0.9429 0.875 0.9348 0.9490
0.2074 0.4844 215 0.1795 0.9412 0.9855 0.9315 0.9655 0.8485 0.9577 0.9032 0.9485 0.9495
0.2161 0.4956 220 0.2092 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9544
0.2013 0.5069 225 0.2009 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9539
0.278 0.5182 230 0.1866 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9499
0.2042 0.5294 235 0.2101 0.8824 0.9841 0.8493 0.9655 0.7179 0.9118 0.8235 0.9074 0.9565
0.2298 0.5407 240 0.2051 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9561
0.1887 0.5520 245 0.1976 0.9118 0.9848 0.8904 0.9655 0.7778 0.9353 0.8615 0.9280 0.9499
0.2529 0.5632 250 0.1923 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9438
0.2241 0.5745 255 0.2032 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9497
0.1916 0.5858 260 0.1981 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9499
0.21 0.5970 265 0.2020 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9513
0.2351 0.6083 270 0.1986 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9469
0.1987 0.6195 275 0.2003 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9445
0.2225 0.6308 280 0.1998 0.9118 0.9848 0.8904 0.9655 0.7778 0.9353 0.8615 0.9280 0.9443
0.2113 0.6421 285 0.1917 0.9118 0.9571 0.9178 0.8966 0.8125 0.9371 0.8525 0.9072 0.9457
0.2216 0.6533 290 0.1924 0.9020 0.9565 0.9041 0.8966 0.7879 0.9296 0.8387 0.9003 0.9469
0.2501 0.6646 295 0.1962 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9499
0.2362 0.6759 300 0.1966 0.9118 0.9848 0.8904 0.9655 0.7778 0.9353 0.8615 0.9280 0.9556
0.2129 0.6871 305 0.1958 0.9118 0.9848 0.8904 0.9655 0.7778 0.9353 0.8615 0.9280 0.9542
0.186 0.6984 310 0.1857 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9537
0.2212 0.7097 315 0.1817 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9532
0.2028 0.7209 320 0.1813 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9535
0.1866 0.7322 325 0.1849 0.9314 0.9714 0.9315 0.9310 0.8438 0.9510 0.8852 0.9313 0.9561
0.2064 0.7435 330 0.1925 0.9314 0.9853 0.9178 0.9655 0.8235 0.9504 0.8889 0.9417 0.9561
0.2209 0.7547 335 0.1945 0.9314 0.9853 0.9178 0.9655 0.8235 0.9504 0.8889 0.9417 0.9547
0.2315 0.7660 340 0.1870 0.9314 0.9714 0.9315 0.9310 0.8438 0.9510 0.8852 0.9313 0.9547
0.2652 0.7772 345 0.1865 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9530
0.2637 0.7885 350 0.1898 0.9314 0.9714 0.9315 0.9310 0.8438 0.9510 0.8852 0.9313 0.9525
0.237 0.7998 355 0.1956 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9518
0.1956 0.8110 360 0.2010 0.9314 0.9853 0.9178 0.9655 0.8235 0.9504 0.8889 0.9417 0.9513
0.2379 0.8223 365 0.2027 0.9216 0.9851 0.9041 0.9655 0.8 0.9429 0.875 0.9348 0.9523
0.2119 0.8336 370 0.2027 0.9314 0.9853 0.9178 0.9655 0.8235 0.9504 0.8889 0.9417 0.9499
0.2032 0.8448 375 0.2001 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9490
0.2422 0.8561 380 0.1990 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9478
0.2829 0.8674 385 0.1985 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9502
0.2246 0.8786 390 0.1984 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9483
0.1988 0.8899 395 0.1978 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9487
0.1628 0.9012 400 0.1978 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9504
0.1933 0.9124 405 0.1983 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9495
0.2364 0.9237 410 0.1983 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9497
0.1937 0.9349 415 0.1979 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9495
0.2002 0.9462 420 0.1980 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9497
0.1955 0.9575 425 0.1979 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9487
0.2134 0.9687 430 0.1973 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9495
0.1779 0.9800 435 0.1969 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9499
0.2254 0.9913 440 0.1986 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9502

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Daewon0808/v4_qwen_lora

Base model

Qwen/Qwen2.5-7B
Adapter
(8)
this model