DashReza7's picture
Add new SentenceTransformer model.
4d0c8c5 verified
metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:410745
  - loss:ContrastiveLoss
widget:
  - source_sentence: وینچ
    sentences:
      - >-
        ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی (
        هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت
        ترقه بار تازه بدون رطوبت وخرابی مارک معتبر نورافشانی
      - پارچه میکرو کجراه
      - >-
        Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ
        خودرویی (جلو ماشینی) 1500LBS کارا (KARA)
  - source_sentence: ' وسپا '
    sentences:
      - پولوشرت زرد وسپا
      - دوچرخه بند سقفی  لیفان X70 ایکس 70 آلومینیومی طرح منابو
      - >-
        دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل
        OXYGEN سایز 26
  - source_sentence: دوچرخه المپیا سایز 27 5
    sentences:
      - "دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا\_کد 16220 سایز 16 دوچرخه المپیا کد 16220 سایز 16 - OLYMPIA"
      - لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
      - قیمت کمپرس سنج موتور
  - source_sentence: دچرخه ی
    sentences:
      - هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
      - جامدادی کیوت
      - جعبه ی کادو ی رنگی
  - source_sentence: هایومکس
    sentences:
      - انگشتر حدید صینی کد2439
      - ژل هایومکس ولومایزر 2 سی سی
      - >-
        دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل
        P-CA501-2
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.8396327702184535
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7623803019523621
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.8951804502771806
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7234876751899719
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8454428891975638
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9511359538406059
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9296495014804667
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.8127916913166371
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 18.16492462158203
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.8798154233377613
            name: Dot F1
          - type: dot_f1_threshold
            value: 17.596263885498047
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.82272025942101
            name: Dot Precision
          - type: dot_recall
            value: 0.9454261329486717
            name: Dot Recall
          - type: dot_ap
            value: 0.9138496334192171
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.8362584631565109
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 56.61064910888672
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.892930089729684
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 60.147003173828125
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8403818109505502
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9524882798413271
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9274603777518026
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.8366528626832315
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 3.691666603088379
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.8933491652479936
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 3.691666603088379
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8525051194539249
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9383038826782065
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9275301813554955
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.8396327702184535
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 56.61064910888672
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.8951804502771806
            name: Max F1
          - type: max_f1_threshold
            value: 60.147003173828125
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8525051194539249
            name: Max Precision
          - type: max_recall
            value: 0.9524882798413271
            name: Max Recall
          - type: max_ap
            value: 0.9296495014804667
            name: Max Ap
          - type: cosine_accuracy
            value: 0.831416113411775
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7449432611465454
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.8897548675482456
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7427525520324707
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8502039810530351
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9331650438754658
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9252554285491397
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.8083437410986218
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 18.16763687133789
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.8761684843089249
            name: Dot F1
          - type: dot_f1_threshold
            value: 17.106109619140625
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8156272661348803
            name: Dot Precision
          - type: dot_recall
            value: 0.9464178386825339
            name: Dot Recall
          - type: dot_ap
            value: 0.9078782883891188
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.827735051162383
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 53.94535446166992
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.887467671202069
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 59.66460418701172
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8336590260906306
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9487017670393076
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9230969972500983
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.8274282959749337
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 3.4869043827056885
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.8874656133173449
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 3.7965426445007324
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8363423648594751
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9452458228152422
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9231713715918721
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.831416113411775
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 53.94535446166992
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.8897548675482456
            name: Max F1
          - type: max_f1_threshold
            value: 59.66460418701172
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8502039810530351
            name: Max Precision
          - type: max_recall
            value: 0.9487017670393076
            name: Max Recall
          - type: max_ap
            value: 0.9252554285491397
            name: Max Ap

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v4")
# Run inference
sentences = [
    'هایومکس',
    'ژل هایومکس ولومایزر 2 سی سی',
    'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8396
cosine_accuracy_threshold 0.7624
cosine_f1 0.8952
cosine_f1_threshold 0.7235
cosine_precision 0.8454
cosine_recall 0.9511
cosine_ap 0.9296
dot_accuracy 0.8128
dot_accuracy_threshold 18.1649
dot_f1 0.8798
dot_f1_threshold 17.5963
dot_precision 0.8227
dot_recall 0.9454
dot_ap 0.9138
manhattan_accuracy 0.8363
manhattan_accuracy_threshold 56.6106
manhattan_f1 0.8929
manhattan_f1_threshold 60.147
manhattan_precision 0.8404
manhattan_recall 0.9525
manhattan_ap 0.9275
euclidean_accuracy 0.8367
euclidean_accuracy_threshold 3.6917
euclidean_f1 0.8933
euclidean_f1_threshold 3.6917
euclidean_precision 0.8525
euclidean_recall 0.9383
euclidean_ap 0.9275
max_accuracy 0.8396
max_accuracy_threshold 56.6106
max_f1 0.8952
max_f1_threshold 60.147
max_precision 0.8525
max_recall 0.9525
max_ap 0.9296

Binary Classification

Metric Value
cosine_accuracy 0.8314
cosine_accuracy_threshold 0.7449
cosine_f1 0.8898
cosine_f1_threshold 0.7428
cosine_precision 0.8502
cosine_recall 0.9332
cosine_ap 0.9253
dot_accuracy 0.8083
dot_accuracy_threshold 18.1676
dot_f1 0.8762
dot_f1_threshold 17.1061
dot_precision 0.8156
dot_recall 0.9464
dot_ap 0.9079
manhattan_accuracy 0.8277
manhattan_accuracy_threshold 53.9454
manhattan_f1 0.8875
manhattan_f1_threshold 59.6646
manhattan_precision 0.8337
manhattan_recall 0.9487
manhattan_ap 0.9231
euclidean_accuracy 0.8274
euclidean_accuracy_threshold 3.4869
euclidean_f1 0.8875
euclidean_f1_threshold 3.7965
euclidean_precision 0.8363
euclidean_recall 0.9452
euclidean_ap 0.9232
max_accuracy 0.8314
max_accuracy_threshold 53.9454
max_f1 0.8898
max_f1_threshold 59.6646
max_precision 0.8502
max_recall 0.9487
max_ap 0.9253

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss max_ap
None 0 - - 0.8131
0.1558 500 0.0262 - -
0.3116 1000 0.0184 - -
0.4674 1500 0.0173 - -
0.6232 2000 0.0164 0.0155 0.9253
0.7791 2500 0.016 - -
0.9349 3000 0.0155 - -
1.0 3209 - - 0.9296

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}