File size: 1,890 Bytes
ac6a977 976c682 ac6a977 8500b3d 5d8c502 8500b3d ac6a977 8500b3d ac6a977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
language:
- zh
- bo
- en
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
pipeline_tag: text-generation
tags:
- pytorch
---
# TibetaMind: Advanced Tibetan Language Model
**TibetaMind** is an advanced language model based on the Llama 3-8B-Instruct architecture, further fine-tuned using extensive Tibetan language corpora. Through this specialized fine-tuning, **TibetaMind** has significantly enhanced its ability to comprehend, process, and generate Tibetan language content, while also providing seamless cross-language understanding between Tibetan and Chinese. This allows for accurate translation and communication across these languages. **TibetaMind** can be applied to a variety of tasks, including Tibetan text generation, summarization, and translation between Tibetan and Chinese, playing a pivotal role in preserving and advancing Tibetan linguistics in the digital age.
# How to use
## Use with transformers
### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "DaydreamerF/TibetaMind"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
)
messages = [
{"role": "user", "content": "如何用藏语表达下面汉语的意思:汉语句子:大狗在楼里不好养。"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
``` |