|
--- |
|
library_name: peft |
|
base_model: FreedomIntelligence/AceGPT-7B |
|
language: |
|
- ar |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This repo contains a low-rank adapter for AceGPT-7B fit on the arbml/alpagasus_cleaned_ar. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
[arbml/alpagasus_cleaned_ar](https://huggingface.co/datasets/arbml/alpagasus_cleaned_ar) |
|
|
|
#### Training Hyperparameters |
|
|
|
``` |
|
python finetune.py --base_model 'FreedomIntelligence/AceGPT-7B' --data_path 'alpagasus_cleaned_ar.json' --output_dir 'lora-alpaca_alpagasus' |
|
Training Alpaca-LoRA model with params: |
|
base_model: FreedomIntelligence/AceGPT-7B |
|
data_path: alpagasus_cleaned_ar.json |
|
output_dir: lora-alpaca_alpagasus |
|
batch_size: 128 |
|
micro_batch_size: 4 |
|
num_epochs: 3 |
|
learning_rate: 0.0003 |
|
cutoff_len: 256 |
|
val_set_size: 2000 |
|
lora_r: 8 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: ['q_proj', 'v_proj'] |
|
train_on_inputs: True |
|
add_eos_token: False |
|
group_by_length: False |
|
wandb_project: |
|
wandb_run_name: |
|
wandb_watch: |
|
wandb_log_model: |
|
resume_from_checkpoint: False |
|
prompt template: alpaca |
|
``` |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.2.dev0 |