Model Architecture

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

MODEL_NAME = "DeepMount00/Llama-3.1-8b-Ita"

model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

def generate_answer(prompt):
    messages = [
        {"role": "user", "content": prompt},
    ]
    model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
    generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
                                          temperature=0.001)
    decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    return decoded[0]

prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)

Developer

[Michele Montebovi]

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 28.23
IFEval (0-Shot) 79.17
BBH (3-Shot) 30.93
MATH Lvl 5 (4-Shot) 10.88
GPQA (0-shot) 5.03
MuSR (0-shot) 11.40
MMLU-PRO (5-shot) 31.96
Downloads last month
10,672
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for DeepMount00/Llama-3.1-8b-ITA

Finetuned
(793)
this model
Quantizations
6 models

Spaces using DeepMount00/Llama-3.1-8b-ITA 6

Collection including DeepMount00/Llama-3.1-8b-ITA

Evaluation results