Dev372's picture
End of training
f3156db verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1.1
metrics:
  - wer
model-index:
  - name: English Whisper Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical
          type: Dev372/Medical_STT_Dataset_1.1
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.580881152225743

English Whisper Model

This model is a fine-tuned version of openai/whisper-tiny.en on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1386
  • Wer: 6.5809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 36
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1731 0.5650 100 0.9844 10.2812
0.6483 1.1299 200 0.6288 9.3047
0.3802 1.6949 300 0.3554 7.8938
0.1437 2.2599 400 0.1702 7.1230
0.1136 2.8249 500 0.1415 6.5841
0.0752 3.3898 600 0.1336 6.0616
0.0713 3.9548 700 0.1257 6.1236
0.0373 4.5198 800 0.1279 5.8526
0.0311 5.0847 900 0.1283 5.8003
0.03 5.6497 1000 0.1303 6.1171
0.0166 6.2147 1100 0.1314 6.0845
0.0241 6.7797 1200 0.1339 6.3588
0.0164 7.3446 1300 0.1368 6.3555
0.0178 7.9096 1400 0.1380 6.4764
0.0099 8.4746 1500 0.1386 6.5809

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1