Neo_7b-merge6
Neo_7b-merge6 is a merge of the following models using LazyMergekit:
𧩠Configuration
models:
- model: m-a-p/neo_7b
- model: DewEfresh/neo_7b
parameters:
weight: 0.5
merge_method: slerp
base_model: m-a-p/neo_7b
parameters:
t: 0.5
dtype: bfloat16
custom_layers:
- sources:
- model: m-a-p/neo_7b
layers: [0, 3]
- model: DewEfresh/neo_7b
layers: [0, 3]
method: weighted_average
target_layers: [0]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [1, 3]
- model: DewEfresh/neo_7b
layers: [1, 3]
method: weighted_average
target_layers: [1]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [2, 3]
- model: DewEfresh/neo_7b
layers: [2, 3]
method: weighted_average
target_layers: [2]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [4, 7]
- model: DewEfresh/neo_7b
layers: [4, 7]
method: weighted_average
target_layers: [3]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [5, 7]
- model: DewEfresh/neo_7b
layers: [5, 7]
method: weighted_average
target_layers: [4]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [6, 7]
- model: DewEfresh/neo_7b
layers: [6, 7]
method: weighted_average
target_layers: [5]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [8, 11]
- model: DewEfresh/neo_7b
layers: [8, 11]
method: weighted_average
target_layers: [6]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [9, 11]
- model: DewEfresh/neo_7b
layers: [9, 11]
method: weighted_average
target_layers: [7]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [10, 11]
- model: DewEfresh/neo_7b
layers: [10, 11]
method: weighted_average
target_layers: [8]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [12, 15]
- model: DewEfresh/neo_7b
layers: [12, 15]
method: weighted_average
target_layers: [9]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [13, 15]
- model: DewEfresh/neo_7b
layers: [13, 15]
method: weighted_average
target_layers: [10]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [14, 15]
- model: DewEfresh/neo_7b
layers: [14, 15]
method: weighted_average
target_layers: [11]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [16, 19]
- model: DewEfresh/neo_7b
layers: [16, 19]
method: weighted_average
target_layers: [12]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [17, 19]
- model: DewEfresh/neo_7b
layers: [17, 19]
method: weighted_average
target_layers: [13]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [18, 19]
- model: DewEfresh/neo_7b
layers: [18, 19]
method: weighted_average
target_layers: [14]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [20, 23]
- model: DewEfresh/neo_7b
layers: [20, 23]
method: weighted_average
target_layers: [15]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [21, 23]
- model: DewEfresh/neo_7b
layers: [21, 23]
method: weighted_average
target_layers: [16]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [22, 23]
- model: DewEfresh/neo_7b
layers: [22, 23]
method: weighted_average
target_layers: [17]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [24, 27]
- model: DewEfresh/neo_7b
layers: [24, 27]
method: weighted_average
target_layers: [18]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [25, 27]
- model: DewEfresh/neo_7b
layers: [25, 27]
method: weighted_average
target_layers: [19]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [26, 27]
- model: DewEfresh/neo_7b
layers: [26, 27]
method: weighted_average
target_layers: [20]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [28, 31]
- model: DewEfresh/neo_7b
layers: [28, 31]
method: weighted_average
target_layers: [21]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [29, 31]
- model: DewEfresh/neo_7b
layers: [29, 31]
method: weighted_average
target_layers: [22]
layer_weights: [0.75, 0.25]
- sources:
- model: m-a-p/neo_7b
layers: [30, 31]
- model: DewEfresh/neo_7b
layers: [30, 31]
method: weighted_average
target_layers: [23]
layer_weights: [0.75, 0.25]
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "DewEfresh/Neo_7b-merge6"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for DewEfresh/Neo_7b-merge6
Base model
DewEfresh/neo_7b