ner_bert_model / README.md
DipakBundheliya's picture
End of training
be6986f verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - shipping_label_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_bert_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: shipping_label_ner
          type: shipping_label_ner
          config: shipping_label_ner
          split: validation
          args: shipping_label_ner
        metrics:
          - name: Precision
            type: precision
            value: 0.8235294117647058
          - name: Recall
            type: recall
            value: 0.9333333333333333
          - name: F1
            type: f1
            value: 0.8749999999999999
          - name: Accuracy
            type: accuracy
            value: 0.9096045197740112

ner_bert_model

This model is a fine-tuned version of bert-base-uncased on the shipping_label_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4145
  • Precision: 0.8235
  • Recall: 0.9333
  • F1: 0.8750
  • Accuracy: 0.9096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 7 1.7796 0.0 0.0 0.0 0.4294
No log 2.0 14 1.4530 0.5 0.2667 0.3478 0.5650
No log 3.0 21 1.1854 0.5510 0.36 0.4355 0.6384
No log 4.0 28 0.9850 0.6667 0.5867 0.6241 0.7345
No log 5.0 35 0.8189 0.6622 0.6533 0.6577 0.7797
No log 6.0 42 0.7194 0.6914 0.7467 0.7179 0.8192
No log 7.0 49 0.6126 0.7262 0.8133 0.7673 0.8588
No log 8.0 56 0.5760 0.75 0.88 0.8098 0.8701
No log 9.0 63 0.4819 0.8 0.9067 0.8500 0.8927
No log 10.0 70 0.4610 0.7907 0.9067 0.8447 0.8983
No log 11.0 77 0.4471 0.8 0.9067 0.8500 0.8927
No log 12.0 84 0.4203 0.7931 0.92 0.8519 0.9040
No log 13.0 91 0.4281 0.8256 0.9467 0.8820 0.9153
No log 14.0 98 0.3913 0.8256 0.9467 0.8820 0.9153
No log 15.0 105 0.3966 0.8235 0.9333 0.8750 0.9096
No log 16.0 112 0.4033 0.8235 0.9333 0.8750 0.9096
No log 17.0 119 0.4149 0.8140 0.9333 0.8696 0.9040
No log 18.0 126 0.4150 0.8140 0.9333 0.8696 0.9040
No log 19.0 133 0.4122 0.8235 0.9333 0.8750 0.9096
No log 20.0 140 0.4145 0.8235 0.9333 0.8750 0.9096

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2