black-forest-labs/FLUX.1-dev
quantized to INT4 using Optimum Quanto.
pip install diffusers optimum-quanto
import json
import torch
import diffusers
import transformers
from optimum.quanto import requantize
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
def load_quanto_transformer(repo_path):
with open(hf_hub_download(repo_path, "transformer/quantization_map.json"), "r") as f:
quantization_map = json.load(f)
with torch.device("meta"):
transformer = diffusers.FluxTransformer2DModel.from_config(hf_hub_download(repo_path, "transformer/config.json")).to(torch.bfloat16)
state_dict = load_file(hf_hub_download(repo_path, "transformer/diffusion_pytorch_model.safetensors"))
requantize(transformer, state_dict, quantization_map, device=torch.device("cuda"))
return transformer
def load_quanto_text_encoder_2(repo_path):
with open(hf_hub_download(repo_path, "text_encoder_2/quantization_map.json"), "r") as f:
quantization_map = json.load(f)
with open(hf_hub_download(repo_path, "text_encoder_2/config.json")) as f:
t5_config = transformers.T5Config(**json.load(f))
with torch.device("meta"):
text_encoder_2 = transformers.T5EncoderModel(t5_config).to(torch.bfloat16)
state_dict = load_file(hf_hub_download(repo_path, "text_encoder_2/model.safetensors"))
requantize(text_encoder_2, state_dict, quantization_map, device=torch.device("cuda"))
return text_encoder_2
pipe = diffusers.AutoPipelineForText2Image.from_pretrained("Disty0/FLUX.1-dev-qint4", transformer=None, text_encoder_2=None, torch_dtype=torch.bfloat16)
pipe.transformer = load_quanto_transformer("Disty0/FLUX.1-dev-qint4")
pipe.text_encoder_2 = load_quanto_text_encoder_2("Disty0/FLUX.1-dev-qint4")
pipe = pipe.to("cuda", dtype=torch.bfloat16)
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("flux-dev.png")
- Downloads last month
- 411
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.