Doctor-Shotgun's picture
Initial model commit
9530d8e
|
raw
history blame
4.25 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - generated_from_trainer
model-index:
  - name: pippa-lora
    results: []

Built with Axolotl

pippa-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.7313 0.05 100 1.7044
1.68 0.11 200 1.6176
1.5642 0.16 300 1.5538
1.6617 0.22 400 1.4986
1.4733 0.27 500 1.4723
1.4916 0.33 600 1.4427
1.5036 0.38 700 1.4271
1.2385 0.44 800 1.4109
1.4094 0.49 900 1.3968
1.4042 0.55 1000 1.3848
1.3946 0.6 1100 1.3771
1.2523 0.66 1200 1.3692
1.2932 0.71 1300 1.3648
1.346 0.77 1400 1.3609
1.1163 0.82 1500 1.3565
1.4656 0.88 1600 1.3495
1.2698 0.93 1700 1.3484
1.2019 0.99 1800 1.3454
1.3685 1.04 1900 1.3477
1.2248 1.1 2000 1.3488
1.2162 1.15 2100 1.3479
1.0443 1.21 2200 1.3491
1.2445 1.26 2300 1.3460
1.3229 1.32 2400 1.3476
1.3464 1.37 2500 1.3439
1.2651 1.43 2600 1.3439
1.516 1.48 2700 1.3424
1.4323 1.54 2800 1.3413
1.08 1.59 2900 1.3436
1.289 1.64 3000 1.3379
1.1221 1.7 3100 1.3384
1.1895 1.75 3200 1.3376
1.3138 1.81 3300 1.3358
1.3907 1.86 3400 1.3343
1.4544 1.92 3500 1.3351
1.25 1.97 3600 1.3334
1.2682 2.03 3700 1.3452
1.3107 2.08 3800 1.3471
1.2096 2.14 3900 1.3496
1.4503 2.19 4000 1.3503
1.142 2.25 4100 1.3485
0.8439 2.3 4200 1.3490
1.2749 2.36 4300 1.3508
0.9578 2.41 4400 1.3502
1.2203 2.47 4500 1.3496
0.9451 2.52 4600 1.3498
0.9602 2.58 4700 1.3491
0.9501 2.63 4800 1.3491
1.2062 2.69 4900 1.3496
1.1728 2.74 5000 1.3491
1.2506 2.8 5100 1.3494
1.4052 2.85 5200 1.3494
1.2012 2.91 5300 1.3494
1.3141 2.96 5400 1.3494

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0