|
--- |
|
tags: |
|
- text-generation |
|
license: cc-by-nc-sa-4.0 |
|
language: |
|
- ko |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
pipeline_tag: text-generation |
|
datasets: |
|
- beomi/KoAlpaca-v1.1a |
|
- jojo0217/korean_rlhf_dataset |
|
- kyujinpy/OpenOrca-KO |
|
- nlpai-lab/kullm-v2 |
|
--- |
|
|
|
# **DataVortexTL-1.1B-v0.1** |
|
|
|
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> |
|
|
|
## **Model Details** |
|
|
|
### **Base Model** |
|
|
|
[TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) |
|
|
|
### **Trained On** |
|
|
|
- **OS**: Ubuntu 20.04 |
|
- **GPU**: H100 80GB 1ea |
|
- **transformers**: v4.36.2 |
|
|
|
### **Dataset** |
|
|
|
- [beomi/KoAlpaca-v1.1a](https://huggingface.co/datasets/beomi/KoAlpaca-v1.1a) |
|
- [jojo0217/korean_rlhf_dataset](https://huggingface.co/datasets/jojo0217/korean_rlhf_dataset) |
|
- [kyujinpy/OpenOrca-KO](https://huggingface.co/datasets/kyujinpy/OpenOrca-KO) |
|
- [nlpai-lab/kullm-v2](https://huggingface.co/datasets/nlpai-lab/kullm-v2) |
|
|
|
### **Instruction format** |
|
|
|
It follows **TinyLlama** format. |
|
|
|
E.g. |
|
|
|
```python |
|
text = """\ |
|
<|system|> |
|
당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다.</s> |
|
<|user|> |
|
대한민국의 수도는 어디야?</s> |
|
<|assistant|> |
|
대한민국의 수도는 서울입니다.</s> |
|
<|user|> |
|
서울 인구는 총 몇 명이야?</s> |
|
""" |
|
``` |
|
|
|
## **Model Benchmark** |
|
|
|
### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)** |
|
|
|
On Benchmarking ... |
|
|
|
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| ---------------------------- | ------- | ------ | ------------ | ------- | ------------- | --------------- | |
|
| DataVortexM-7B-Instruct-v0.1 | 39.81 | 34.13 | 42.35 | 38.73 | 45.46 | 38.37 | |
|
| DataVortexS-10.7B-v0.1 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
| DataVortexS-10.7B-v0.2 | 43.6 | 38.74 | 50.74 | 38.98 | 44.7 | 44.86 | |
|
| DataVortexS-10.7B-v0.3 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
| DataVortexS-10.7B-v0.4 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
| DataVortexS-10.7B-v0.4 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
| **DataVortexTL-1.1B-v0.1** | **0** | **0** | **0** | **0** | **0** | **0** | |
|
| DataVortexS-10.7B-dpo-v0.1 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
|
|
## **Implementation Code** |
|
|
|
This model contains the chat_template instruction format. |
|
You can use the code below. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1") |
|
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1") |
|
|
|
messages = [ |
|
{"role": "system", "content": "당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다."}, |
|
{"role": "user", "content": "대한민국의 수도는 어디야?"}, |
|
{"role": "assistant", "content": "대한민국의 수도는 서울입니다."}, |
|
{"role": "user", "content": "서울 인구는 총 몇 명이야?"} |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |
|
|
|
## **License** |
|
|
|
The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license. |
|
|
|
<div align="center"> |
|
<a href="https://edentns.com/"> |
|
<img src="./Logo.png" alt="Logo" style="height: 3em;"> |
|
</a> |
|
</div> |
|
|