base_model: Elfrino/PsyMedLewdPass
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
notes:
Creative, articulate and has a wacky sense of humour with the right settings:
RECOMMENDED SETTINGS:
(based on KoboldCPP):
Preset: Mayday
Temperature - 1.3
Max Ctx. Tokens - 4096
Top p Sampling - 0.99
Repetition Penalty - 1.1
Amount to Gen. - 280
New findings:
around 47 layers offloaded to GPU
Smartcontext enabled
Custom RoPe Config enabled (but left as default)
Prompt template: Alpaca
Elfrino/PsyMedLewdPass-Q5_K_M-GGUF
This model was converted to GGUF format from Elfrino/PsyMedLewdPass
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Elfrino/PsyMedLewdPass-Q5_K_M-GGUF --hf-file psymedlewdpass-q5_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Elfrino/PsyMedLewdPass-Q5_K_M-GGUF --hf-file psymedlewdpass-q5_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Elfrino/PsyMedLewdPass-Q5_K_M-GGUF --hf-file psymedlewdpass-q5_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Elfrino/PsyMedLewdPass-Q5_K_M-GGUF --hf-file psymedlewdpass-q5_k_m.gguf -c 2048