ResNet-50 Model for Central Asian Image Classification
Model Description
This is a pre-trained ResNet-50 model fine-tuned on the Central Asian Food Dataset. The model is used for image classification across multiple classes. The data was split into training, validation, and test sets. The model was trained using gradient descent with an SGD optimizer and CrossEntropyLoss as the loss function.
Training Parameters
- Epochs: 25
- Batch Size: 32
- Learning Rate: 0.001
- Optimizer: SGD with momentum of 0.9
- Loss Function: CrossEntropyLoss
Results
Training and Validation, F1
Stage | Loss (train) | Accuracy (train) | Loss (val) | Accuracy (val) |
---|---|---|---|---|
Epoch 1 | 2.1171 | 47.00% | 0.8727 | 75.00% |
Epoch 2 | 1.0462 | 69.00% | 0.6721 | 78.00% |
... | ... | ... | ... | ... |
Epoch 25 | 0.4286 | 86.00% | 0.4349 | 86.00% |
Model was trained on two T4 GPUs in a Kaggle notebook trained 36m 7s
Best validation accuracy: 86,54%
precision recall f1-score support
achichuk 0.91 0.98 0.94 41
airan-katyk 0.84 0.93 0.89 46
asip 0.78 0.57 0.66 37
bauyrsak 0.90 0.90 0.90 62
beshbarmak-w-kazy 0.71 0.84 0.77 44
beshbarmak-wo-kazy 0.86 0.69 0.76 61
chak-chak 0.94 0.94 0.94 93
cheburek 0.92 0.88 0.90 94
doner-lavash 0.77 1.00 0.87 20
doner-nan 0.86 0.82 0.84 22
hvorost 0.98 0.86 0.91 141
irimshik 0.96 0.94 0.95 175
kattama-nan 0.84 0.88 0.86 66
kazy-karta 0.72 0.78 0.75 46
kurt 0.86 0.97 0.91 61
kuyrdak 0.92 0.93 0.92 58
kymyz-kymyran 0.93 0.82 0.87 49
lagman-fried 0.86 0.95 0.90 38
lagman-w-soup 0.90 0.80 0.85 75
lagman-wo-soup 0.58 0.86 0.69 22
manty 0.91 0.95 0.93 63
naryn 0.97 0.99 0.98 84
nauryz-kozhe 0.88 0.96 0.92 52
orama 0.68 0.84 0.75 38
plov 0.95 0.98 0.97 101
samsa 0.91 0.93 0.92 106
shashlyk-chicken 0.68 0.65 0.66 62
shashlyk-chicken-v 0.74 0.76 0.75 33
shashlyk-kuskovoi 0.75 0.75 0.75 71
shashlyk-kuskovoi-v 0.53 0.79 0.64 29
shashlyk-minced-meat 0.74 0.69 0.72 42
sheep-head 0.75 0.94 0.83 16
shelpek 0.77 0.86 0.81 64
shorpa 0.95 0.88 0.91 80
soup-plain 0.96 0.94 0.95 71
sushki 0.83 1.00 0.91 43
suzbe 0.89 0.82 0.86 62
taba-nan 0.92 0.80 0.86 136
talkan-zhent 0.86 0.80 0.83 90
tushpara-fried 0.79 0.74 0.76 46
tushpara-w-soup 0.94 0.94 0.94 67
tushpara-wo-soup 0.92 0.87 0.89 91
accuracy 0.87 2698
macro avg 0.84 0.86 0.85 2698
weighted avg 0.88 0.87 0.87 2698
Testing
After training, the model was tested on the test set:
- Test accuracy: 87%
Repository Structure
main.py
— Code for training and testing the modelmodel/
— Saved model in SafeTensors format
Usage Instructions
from transformers import AutoModelForImageClassification from huggingface_hub import hf_hub_download from safetensors.torch import load_file
repo_id = "Eraly-ml/centraasia-ResNet-50" filename = "model.safetensors"
Load model
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
model = AutoModelForImageClassification.from_pretrained(repo_id)
model.load_state_dict(load_file(model_path))
My telegram @eralyf
- Downloads last month
- 30
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Eraly-ml/centraasia-ResNet-50
Base model
microsoft/resnet-50