|
--- |
|
language: |
|
- en |
|
library_name: peft |
|
tags: |
|
- llama |
|
- lora |
|
- peft |
|
license: apache-2.0 |
|
--- |
|
|
|
[Low-Rank-Adaption (LoRA)](https://paperswithcode.com/paper/lora-low-rank-adaptation-of-large-language) of [LLAMA 6B model](https://paperswithcode.com/paper/llama-open-and-efficient-foundation-language-1) that is fine-tuned with [Stanford Alpaca instruction dataset](https://github.com/tatsu-lab/stanford_alpaca) using [PEFT](https://github.com/huggingface/peft). |
|
|
|
This model is trained based on the script provided in https://github.com/tloen/alpaca-lora. |
|
|
|
> You might need to install the latest transformers from github for Llama support. |
|
|
|
```python |
|
from peft import PeftModel |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") |
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
"decapoda-research/llama-7b-hf", |
|
load_in_8bit=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, "tloen/alpaca-lora-7b", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{input} |
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Response:""" |
|
|
|
|
|
model.eval() |
|
|
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=2048, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Response:")[1].strip() |
|
``` |
|
|