EvanD's picture
Update README.md
12b932d
metadata
pipeline_tag: token-classification
tags:
  - named-entity-recognition
  - sequence-tagger-model
widget:
  - text: A nevem Amadeus Wolfgang és Berlinben élek
inference:
  parameters:
    aggregation_strategy: simple
    grouped_entities: true
language:
  - hu

xlm-roberta model trained on hungarian ner dataset from flair

Test metric Results
test_f1_mac_hu_ner 0.9962009787559509
test_loss_hu_ner 0.019755737856030464
test_prec_mac_hu_ner 0.9692726135253906
test_rec_mac_hu_ner 0.9708725810050964
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner")
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner")

nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
example = "A nevem Amadeus Wolfgang és Berlinben élek"

ner_results = nlp(example)
print(ner_results)