license: creativeml-openrail-m
language:
- en
tags:
- di.ffusion.ai
- stable-diffusion
- LyCORIS
- LoRA
Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS
di.FFUSION.ai-tXe-FXAA Trained on "121361" images.
Enhance your model's quality and sharpness using your own pre-trained Unet.
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
Large size due to Lyco CONV 256
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
Note: This is not the text encoder used in the official FFUSION AI model.
SAMPLES
Available also at https://civitai.com/models/83622
For a1111 Install https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris
Download di.FFUSION.ai-tXe-FXAA to /models/Lycoris
Option1:
Insert lyco:di.FFUSION.ai-tXe-FXAA:1.0 to prompt No need to split Unet and Text Enc as its only TX encoder there.
You can go up to 2x weights
Option2: If you need it always ON (ex run a batch from txt file) then you can go to settings / Quicksettings list
add sd_lyco
restart and you should have a drop-down now 🤟 🥃
Table of Contents
- Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS
- Table of Contents
- Table of Contents
- Model Details
- Uses
- Bias, Risks, and Limitations
- Training Details
- Evaluation
- Model Examination
- Environmental Impact
- Technical Specifications [optional]
- Citation
- Glossary [optional]
- More Information [optional]
- Model Card Authors [optional]
- Model Card Contact
- How to Get Started with the Model
Model Details
Model Description
di.FFUSION.ai-tXe-FXAA Trained on "121361" images.
Enhance your model's quality and sharpness using your own pre-trained Unet.
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
Large size due to Lyco CONV 256
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
Note: This is not the text encoder used in the official FFUSION AI model.
- Developed by: FFusion.ai
- Shared by [Optional]: idle stoev
- Model type: Language model
- Language(s) (NLP): en
- License: creativeml-openrail-m
- Parent Model: More information needed
- Resources for more information: More information needed
Uses
Direct Use
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
Large size due to Lyco CONV 256
Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
Recommendations
Training Details
Training Data
Trained on "121361" images.
ss_caption_tag_dropout_rate: "0.0", ss_multires_noise_discount: "0.3", ss_mixed_precision: "bf16", ss_text_encoder_lr: "1e-07", ss_keep_tokens: "3", ss_network_args: "{"conv_dim": "256", "conv_alpha": "256", "algo": "loha"}", ss_caption_dropout_rate: "0.02", ss_flip_aug: "False", ss_learning_rate: "2e-07", ss_sd_model_name: "stabilityai/stable-diffusion-2-1-base", ss_max_grad_norm: "1.0", ss_num_epochs: "2", ss_gradient_checkpointing: "False", ss_face_crop_aug_range: "None", ss_epoch: "2", ss_num_train_images: "121361", ss_color_aug: "False", ss_gradient_accumulation_steps: "1", ss_total_batch_size: "100", ss_prior_loss_weight: "1.0", ss_training_comment: "None", ss_network_dim: "768", ss_output_name: "FusionaMEGA1tX", ss_max_bucket_reso: "1024", ss_network_alpha: "768.0", ss_steps: "2444", ss_shuffle_caption: "True", ss_training_finished_at: "1684158038.0763328", ss_min_bucket_reso: "256", ss_noise_offset: "0.09", ss_enable_bucket: "True", ss_batch_size_per_device: "20", ss_max_train_steps: "2444", ss_network_module: "lycoris.kohya",
Training Procedure
Preprocessing
"{"buckets": {"0": {"resolution": [192, 256], "count": 1}, "1": {"resolution": [192, 320], "count": 1}, "2": {"resolution": [256, 384], "count": 1}, "3": {"resolution": [256, 512], "count": 1}, "4": {"resolution": [384, 576], "count": 2}, "5": {"resolution": [384, 640], "count": 2}, "6": {"resolution": [384, 704], "count": 1}, "7": {"resolution": [384, 1088], "count": 15}, "8": {"resolution": [448, 448], "count": 5}, "9": {"resolution": [448, 576], "count": 1}, "10": {"resolution": [448, 640], "count": 1}, "11": {"resolution": [448, 768], "count": 1}, "12": {"resolution": [448, 832], "count": 1}, "13": {"resolution": [448, 1088], "count": 25}, "14": {"resolution": [448, 1216], "count": 1}, "15": {"resolution": [512, 640], "count": 2}, "16": {"resolution": [512, 768], "count": 10}, "17": {"resolution": [512, 832], "count": 3}, "18": {"resolution": [512, 896], "count": 1525}, "19": {"resolution": [512, 960], "count": 2}, "20": {"resolution": [512, 1024], "count": 665}, "21": {"resolution": [512, 1088], "count": 8}, "22": {"resolution": [576, 576], "count": 5}, "23": {"resolution": [576, 768], "count": 1}, "24": {"resolution": [576, 832], "count": 667}, "25": {"resolution": [576, 896], "count": 9601}, "26": {"resolution": [576, 960], "count": 872}, "27": {"resolution": [576, 1024], "count": 17}, "28": {"resolution": [640, 640], "count": 3}, "29": {"resolution": [640, 768], "count": 7}, "30": {"resolution": [640, 832], "count": 608}, "31": {"resolution": [640, 896], "count": 90}, "32": {"resolution": [704, 640], "count": 1}, "33": {"resolution": [704, 704], "count": 11}, "34": {"resolution": [704, 768], "count": 1}, "35": {"resolution": [704, 832], "count": 1}, "36": {"resolution": [768, 640], "count": 225}, "37": {"resolution": [768, 704], "count": 6}, "38": {"resolution": [768, 768], "count": 74442}, "39": {"resolution": [832, 576], "count": 23784}, "40": {"resolution": [832, 640], "count": 554}, "41": {"resolution": [896, 512], "count": 1235}, "42": {"resolution": [896, 576], "count": 50}, "43": {"resolution": [896, 640], "count": 88}, "44": {"resolution": [960, 512], "count": 165}, "45": {"resolution": [960, 576], "count": 5246}, "46": {"resolution": [1024, 448], "count": 5}, "47": {"resolution": [1024, 512], "count": 1187}, "48": {"resolution": [1024, 576], "count": 40}, "49": {"resolution": [1088, 384], "count": 70}, "50": {"resolution": [1088, 448], "count": 36}, "51": {"resolution": [1088, 512], "count": 3}, "52": {"resolution": [1216, 448], "count": 36}, "53": {"resolution": [1344, 320], "count": 29}, "54": {"resolution": [1536, 384], "count": 1}}, "mean_img_ar_error": 0.01693107810697896}",
Speeds, Sizes, Times
ss_resolution: "(768, 768)", ss_v2: "True", ss_cache_latents: "False", ss_unet_lr: "2e-07", ss_num_reg_images: "0", ss_max_token_length: "225", ss_lr_scheduler: "linear", ss_reg_dataset_dirs: "{}", ss_lr_warmup_steps: "303", ss_num_batches_per_epoch: "1222", ss_lowram: "False", ss_multires_noise_iterations: "None", ss_optimizer: "torch.optim.adamw.AdamW(weight_decay=0.01,betas=(0.9, 0.99))",
Evaluation
Testing Data, Factors & Metrics
Testing Data
More information needed
Factors
More information needed
Metrics
More information needed
Results
More information needed
Model Examination
More information needed
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: 8xA100
- Hours used: 64
- Cloud Provider: CoreWeave
- Compute Region: US Main
- Carbon Emitted: 6.72
Technical Specifications [optional]
Model Architecture and Objective
Enhance your model's quality and sharpness using your own pre-trained Unet.
Compute Infrastructure
More information needed
Hardware
8xA100
Software
Fully trained only with Kohya S & Shih-Ying Yeh (Kohaku-BlueLeaf) https://arxiv.org/abs/2108.06098
Citation
BibTeX:
More information needed
APA:
@misc{LyCORIS, author = "Shih-Ying Yeh (Kohaku-BlueLeaf), Yu-Guan Hsieh, Zhidong Gao", title = "LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion", howpublished = "\url{https://github.com/KohakuBlueleaf/LyCORIS}", month = "March", year = "2023" }
Glossary [optional]
More information needed
More Information [optional]
More information needed
Model Card Authors [optional]
idle stoev
Model Card Contact
How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
For a1111 Install https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris
Download di.FFUSION.ai-tXe-FXAA to /models/Lycoris
Option1:
Insert lyco:di.FFUSION.ai-tXe-FXAA:1.0 to prompt No need to split Unet and Text Enc as its only TX encoder there.
You can go up to 2x weights
Option2: If you need it always ON (ex run a batch from txt file) then you can go to settings / Quicksettings list
add sd_lyco
restart and you should have a drop-down now 🤟 🥃