llama-2-ner / README.md
Farjfar's picture
End of training
c91a3a7 verified
|
raw
history blame
2.38 kB
metadata
library_name: peft
tags:
  - generated_from_trainer
base_model: NousResearch/Llama-2-7b-hf
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: llama-2-ner
    results: []

llama-2-ner

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1194
  • Precision: 0.2718
  • Recall: 0.2789
  • F1: 0.2753
  • Accuracy: 0.9676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 39 0.1625 0.0 0.0 0.0 0.9671
No log 2.0 78 0.1430 0.0 0.0 0.0 0.9673
No log 3.0 117 0.1297 0.3235 0.0579 0.0982 0.9674
No log 4.0 156 0.1158 0.3015 0.2158 0.2515 0.9676
No log 5.0 195 0.1197 0.45 0.0947 0.1565 0.9690
No log 6.0 234 0.1105 0.2526 0.2579 0.2552 0.9664
No log 7.0 273 0.1071 0.2632 0.2632 0.2632 0.9674
No log 8.0 312 0.1170 0.3030 0.2632 0.2817 0.9687
No log 9.0 351 0.1165 0.2512 0.2737 0.2620 0.9665
No log 10.0 390 0.1194 0.2718 0.2789 0.2753 0.9676

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1