YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Dataset stats:
lat_mean = 39.951564548022596
lat_std = 0.0006361722351128644
lon_mean = -75.19150880602636
lon_std = 0.000611411894337979

The model can be loaded using:

from huggingface_hub import hf_hub_download
import torch

# Specify the repository and the filename of the model you want to load
repo_id = "FinalProj5190/ImageToGPSproject_new_vit"  # Replace with your repo name
filename = "resnet_gps_regressor_complete.pth"

model_path = hf_hub_download(repo_id=repo_id, filename=filename)

# Load the model using torch
model_test = torch.load(model_path)
model_test.eval()  # Set the model to evaluation mode

The model implementation is here:

class MultiModalModel(nn.Module):
    def __init__(self, num_classes=2):
        super(MultiModalModel, self).__init__()
        self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
        
        # Replace for regression instead of classification
        self.regression_head = nn.Sequential(
            nn.Linear(self.vit.config.hidden_size, 512),
            nn.ReLU(),
            nn.Linear(512, num_classes)
        )
    
    def forward(self, x):
        outputs = self.vit(pixel_values=x)
        # Take the last hidden state (CLS token embedding)
        cls_output = outputs.last_hidden_state[:, 0, :]
        # Pass through the regression head
        gps_coordinates = self.regression_head(cls_output)
        return gps_coordinates
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.