cuad_qa_model

This model is a fine-tuned version of answerdotai/ModernBERT-base on the cuad-qa dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2765
  • Jaccard: 0.3298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 3
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 12
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Jaccard
4.0374 0.3224 300 2.0316 0.3097
2.2477 0.6448 600 1.4555 0.3400
2.0917 0.9672 900 1.3932 0.3600
1.7293 1.2891 1200 1.2932 0.3288
1.709 1.6115 1500 1.2642 0.3280
1.7021 1.9339 1800 1.2142 0.3456
1.3928 2.2558 2100 1.2952 0.3295
1.3582 2.5782 2400 1.2791 0.3298
1.3509 2.9006 2700 1.2765 0.3298

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
38
Safetensors
Model size
150M params
Tensor type
F32
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Francois2511/cuad_qa_model

Finetuned
(252)
this model