File size: 3,762 Bytes
4a2251a 4abdc15 4a2251a 4abdc15 4a2251a 4abdc15 4a2251a 4abdc15 4a2251a 4abdc15 4a2251a 4abdc15 4a2251a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
datasets:
- cuad-qa
model-index:
- name: cuad_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cuad_qa_model
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the cuad-qa dataset.
It achieves the following results on the evaluation set:
- Loss: 56.3253
- Jaccard: 0.1325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Jaccard |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 2931.2947 | 0.1075 | 100 | 125.3868 | 0.0261 |
| 114.0476 | 0.2149 | 200 | 98.0385 | 0.0225 |
| 92.3046 | 0.3224 | 300 | 86.1094 | 0.0279 |
| 83.4547 | 0.4299 | 400 | 80.0709 | 0.0403 |
| 80.4591 | 0.5373 | 500 | 75.2658 | 0.0433 |
| 76.238 | 0.6448 | 600 | 71.9617 | 0.0445 |
| 73.2576 | 0.7523 | 700 | 68.1718 | 0.0463 |
| 70.5061 | 0.8598 | 800 | 64.2118 | 0.0536 |
| 72.0594 | 0.9672 | 900 | 82.5902 | 0.0243 |
| 65.2249 | 1.0742 | 1000 | 59.8434 | 0.0647 |
| 63.2437 | 1.1816 | 1100 | 60.3719 | 0.0932 |
| 67.1502 | 1.2891 | 1200 | 63.5264 | 0.1114 |
| 65.1003 | 1.3966 | 1300 | 60.7845 | 0.1243 |
| 64.7538 | 1.5040 | 1400 | 66.3558 | 0.1200 |
| 66.7688 | 1.6115 | 1500 | 69.2212 | 0.1149 |
| 76.4721 | 1.7190 | 1600 | 69.5449 | 0.1458 |
| 82.2733 | 1.8264 | 1700 | 82.1182 | 0.0449 |
| 78.7475 | 1.9339 | 1800 | 62.4942 | 0.1581 |
| 69.5967 | 2.0408 | 1900 | 63.3104 | 0.1507 |
| 67.6753 | 2.1483 | 2000 | 56.4553 | 0.2238 |
| 64.0365 | 2.2558 | 2100 | 60.3552 | 0.1978 |
| 62.561 | 2.3632 | 2200 | 55.5222 | 0.2238 |
| 62.0848 | 2.4707 | 2300 | 51.5148 | 0.2239 |
| 59.3192 | 2.5782 | 2400 | 56.1338 | 0.1939 |
| 63.3072 | 2.6857 | 2500 | 55.3624 | 0.2385 |
| 63.0132 | 2.7931 | 2600 | 48.8478 | 0.2614 |
| 61.0742 | 2.9006 | 2700 | 57.2687 | 0.2574 |
| 63.7064 | 3.0075 | 2800 | 58.7552 | 0.2569 |
| 61.3371 | 3.1150 | 2900 | 62.7214 | 0.2473 |
| 66.2795 | 3.2225 | 3000 | 60.0179 | 0.2640 |
| 65.9729 | 3.3299 | 3100 | 59.7260 | 0.2879 |
| 67.5846 | 3.4374 | 3200 | 63.1864 | 0.2627 |
| 65.6924 | 3.5449 | 3300 | 58.8332 | 0.2743 |
| 64.2456 | 3.6523 | 3400 | 59.7355 | 0.1667 |
| 64.9793 | 3.7598 | 3500 | 57.0126 | 0.1622 |
| 63.8452 | 3.8673 | 3600 | 56.8423 | 0.1332 |
| 65.2058 | 3.9747 | 3700 | 56.3253 | 0.1325 |
### Framework versions
- Transformers 4.48.2
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|